scholarly journals Release of HMGB1 in Podocytes Exacerbates Lipopolysaccharide-Induced Acute Kidney Injury

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhao Gao ◽  
Li Lu ◽  
Xinghua Chen

Objective. Acute kidney injury (AKI) usually occurs during sepsis. Inflammation factors, such as high-mobility group box 1 (HMGB1), are dramatically upregulated under septic conditions. In our current work, the functions of HMGB1 in AKI were explored. Methods. An AKI model was induced by the lipopolysaccharide (LPS) challenge in C57 mice. Podocytes were challenged by LPS for different durations. Subsequently, podocytes transfected with HMGB1 siRNA were exposed to LPS for 24 h. The expressions of supernatant HMGB1 and cellular active caspase-3 were examined by Western blotting analysis. To explore the effect of HMGB1 on tubular epithelial cells (TECs), HK-2 cells were exposed to HMGB1 at various concentrations for 24 h. Epithelial-mesenchymal transition (EMT) of HK-2 cells was evaluated by Western blotting analysis. Mitochondrial division and apoptosis of HK-2 cells were assessed by MitoTracker Red and Western blotting analysis, respectively. Results. Compared with the sham control group, the expression of HMGB1 was increased in the kidney of AKI mice. Moreover, the expression of supernatant HMGB1 was increased in LPS-challenged podocytes compared with the control group. Knockdown of HMGB1 attenuated LPS-induced podocyte injury. Besides, EMT in TECs was triggered by HMGB1. Mitochondrial damage and apoptosis of HK-2 cells exposed to HMGB1 were markedly elevated compared with the control group. Conclusions. Collectively, HMGB1 release in podocytes was induced by LPS, subsequently leading to exacerbated AKI.

2012 ◽  
Vol 27 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Renata Cristiane Gennari Bianchi ◽  
Eduardo Rochete Ropelle ◽  
Carlos Kiyoshi Katashima ◽  
José Barreto Campello Carvalheira ◽  
Luiz Roberto Lopes ◽  
...  

PURPOSE: To study if the pre-radiotherapy physical activity has radio-protective elements, by measuring the radio-induced activation of pro-inflammatory cytokines as interleukin-6 (il-6), transforming growth factor -β (tgf -β), tumor necrosis factor -α (tnf-α) and protein beta kinase β (ikkβ), through western blotting analysis. METHODS: A randomized study with 28 Wistar hannover rats, males, with a mean age of 90 days and weighing about 200 grams. The animals were divided into three groups: (GI, GII and GIII). GIII group were submitted to swimming for eight weeks (zero load, three times a week, about 30 minutes). Then, the groups (except the control group) were submitted to irradiation by cobalt therapy, single dose of 3.5 gray in the whole body. All animals were sacrificed by overdose of pentobarbital, according to the time for analysis of cytokines, and then a fragment of the lower lobe of the right lung went to western blotting analysis. RESULTS: The cytokines IKK β, TNF-α and IL-6 induced by radiation in the lung were lower in the exercised animals. However, exercise did not alter the radiation-induced increase in tgf-β. CONCLUSION: The results show a lower response in relation to inflammatory cytokines in the group that practiced the exercise pre-radiotherapy, showing that exercise can protect tissues from tissue damage due to irradiation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Xie ◽  
Donghao Liu ◽  
Haoyi Wang ◽  
Haitao Long ◽  
Yong Zhu ◽  
...  

Abstract The exact mechanism of Masquelet technique is unknown. This study intends to explore the effects of topical mechanical stability on the formation of Masquelet membrane. Segmental radius shaft defect was created in all rabbits, which were filled with polymethylmethacrylate (PMMA) in Non-fixation group, and with PMMA fixed with plates in Fixation group, and subjected to no disposal in control group. The topical stability of PMMA and plates were monitored via X-ray and mechanical test. And the membranes were excised for further Histological, IHC and Western-Blotting analysis 4 and 6 weeks post-operatively. X-ray revealed no sign of plates loosening, or shift of PMMA. Mechanical tests revealed superior topical stability by plates. Pathological examinations suggested that vascularized and osteogenic membranes were formed around PMMA. IHC and Western-Blotting analysis revealed that both Fixation and Non-fixation group exerted significant effects on the expression of Ki67, COL I, and CD31 positive cells, as well as the protein expression of osteogenic (RUNX2, ALP) and angiogenic (VEGFA, TGF-β1) factors. And compared with membrane in Non-fixation group, Fixing PMMA spacer with plates caused a significant increase in osteogenic and angiogenic expression. This study indicates that rigid fixation provided by plate in Masquelet technique positively alters the quality of membrane formed surrounding PMMA, in terms of significantly osteogenic and angiogenic potential.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1918-1918
Author(s):  
Patricia M.B. Favaro ◽  
Samuel S. Medina ◽  
Fabiola Traina ◽  
Gislaine B. Oliveira ◽  
Irene L. Metze ◽  
...  

Abstract Recently, we have cloned a new human gene (GenBank Accession No. AY278319), belonging to the formin family. This new gene, called for us human leukocyte formin, presents the common domains found in formin-related proteins: FH1, FH2 and FH3 domains. Western Blotting analysis has demonstrated that the protein encoded by this gene is overexpressed in lymphoid malignancies and cancer cell lines. Based on this pattern of expression, our objective was to investigate the expression of human leukocyte formin protein, by Western blotting analysis, in mononuclear cells from chronic lymphocytic leukemia (CLL) patients, isolated on a Ficoll-Hypaque gradient. We studied 18 CLL patients with median age of 65 y.o. (range, 45 to 86) out of treatment for at least three months (Rai 0 n=8; Rai 1 n=6; Rai 2 n=1; Rai3 n=1; Rai 4 n=2). As normal control we used 6 blood donors. Our data showed an overexpression of the human leukocyte formin in the CLL group when compared with the control group (p= 0.0354), as well as a positive correlation of this protein and ZAP-70 in the CLL group (Spearman test, p= 0.0107). The expression of ZAP-70 has been associated with rapid progression and poor survival and can be used as a prognostic marker. Previously we had described that human leukocyte formin protein associates with Akt, a critical survival regulator in many different cell types. The association was observed in a protein extract of Jurkat cell line and in peripheral blood leukocytes from CLL patients. In an attempt to confirm the association between Akt and human leukocyte formin, we performed cotransfections in 293 cells using an expression vector pEGFP containing FH2 or FH3 domains, and an expression vector of pCMV-HA containing the full length of Akt. The results showed that both FH2 and FH3 domains are involved in the association with Akt. The correlation of human leukocyte formin and ZAP-70 expression, and the association of human leukocyte formin protein with Akt suggest that this new protein may be involved in the signaling pathway of leukemia cell survival and is possibly a new prognostic marker.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Byung Min Ye ◽  
Il Young Kim ◽  
Min Jeong Kim ◽  
Soo Bong Lee ◽  
Dong Won Lee ◽  
...  

Abstract Background and Aims Acute kidney injury (AKI) is an underestimated, yet important risk factor for the development of chronic kidney disease (CKD), which is characterized by the tubulointerstitial fibrosis and tubular epithelial-mesenchymal transition (EMT). Akt has been reported to be involved in renal fibrosis and EMT. Thus, we investigated the role of Akt1, one of the three Akt isoforms, in the murine model of AKI to CKD progression. Method We subjected the wild type and Akt1−/− mice to unilateral ischemia-reperfusion injury (UIRI). UIRI was induced by clamping the left renal artery for 30 min followed by reperfusion. After 6 weeks of UIRI, the renal fibrosis and EMT were assessed by histology, immunohistochemistry, and western blot. Results After 6 weeks after UIRI, we found that Akt1, not Akt2 or Akt3, was activated in UIRI-kidney. The tubulointerstitial fibrosis was significantly alleviated in Akt1−/− mice compared with the wild type (WT) mice. Besides, the deletion of Akt1 decreased the expression of the vimentin and α-SMA and increased the expression of E-cadherin, indicating the suppression of tubular EMT. However, there was no difference in the activity of TGF-β1/Smad signalling, which is the potent inducer of renal fibrosis and EMT, between WT mice and Akt1−/− mice. The deletion of Akt1 also increased the GSK-3β activity and decreased the expression of β-catenin, Snail, and twist1. Conclusion Our findings demonstrate that the deletion of Akt1 attenuates the renal fibrosis and tubular EMT independently of TGF-β1/Smad signalling during the AKI to CKD progression. Akt1 may be the therapeutic target against the AKI to CKD progression.


2020 ◽  
Vol 39 (12) ◽  
pp. 1628-1638 ◽  
Author(s):  
J-Y Zhao ◽  
X-L Wang ◽  
Y-C Yang ◽  
B Zhang ◽  
Y-B Wu

Acute kidney injury (AKI) is an independent risk factor for chronic kidney disease (CKD). However, the role and mechanism of microRNA (miRNA, miR) in AKI-CKD transition are elusive. In this study, a murine model of renal ischemia/reperfusion was established to investigate the repairing effect and mechanism of miR-101a-3p on renal injury. The pathological damage of renal tissue was observed by hematoxylin and eosin and Masson staining. The levels of miR-101, profibrotic cytokines, and epithelial–mesenchymal transition (EMT) markers were analyzed using Western blotting, real-time polymerase chain reaction, and/or immunofluorescence. MiR-101 overexpression caused the downregulation of α-smooth muscle actin, collagen-1, and vimentin, as well as upregulation of E-cadherin, thereby alleviating the degree of renal tissue damage. MiR-101 overexpression mitigated hypoxic HK-2 cell damage. Collagen, type X, alpha 1 and transforming growth factor β receptor 1 levels were downregulated in hypoxic cells transfected with miR-101 mimic. Our study indicates that miR-101 is an anti-EMT miRNA, which provides a novel therapeutic strategy for AKI-CKD transition.


2021 ◽  
Author(s):  
Bingfeng Luo ◽  
Yuan Yuan ◽  
Jian Hou ◽  
Guanming Kuang ◽  
Ping Li ◽  
...  

Abstract Background: The bone is the most common site of distant metastasis in prostate cancer. However, treatments for the bone metastasis of prostate cancer remain unsatisfactory. MicroRNAs (miRNAs) are small noncoding RNAs that play a variety of critical roles in tumor development and progression. Studies have confirmed that miRNA mimics could regulate the response to therapy in many cancers. Methods: In this study, a set of forty-four miRNAs were reduced in prostate cancer patients with bone metastases by high-throughput sequencing analysis. Wound healing, transwell assays and western blotting analysis were used to explore the role of miRNA mimic in prostate cancer bone metastasis. Results: Further gene ontology and pathway analysis showed that these miRNAs target genes are mainly involved in cellular metabolic process, intracellular membrane-bounded organelle, as well as proteoglycans in cancer and focal adhesion. Therefore, these down-regulated miRNAs may play a key role for prostate cancer bone metastasis treatment, including hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-133a-3p, hsa-miR-222-5p, hsa-miR-204-3p, hsa-miR-145-5p, hsa-miR-3681-5p, hsa-miR-184, hsa-miR-144-3p, hsa-miR-204-5p, and hsa-miR-221-5p. To further investigate the role of these miRNA mimics on prostate cancer bone metastasis, miR-145-5p was randomly selected for validation. Bioinformatics analysis showed that miR-145-5p target genes significantly affected TGF-beta and adherens junction signaling pathway. Wound healing and transwell assays and western blotting analysis revealed that miR-145-5p mimic inhibited proliferation, migration and invasion. Importantly, miR-145-5p mimic increased the expression of E-cadherin and reduced the expression of matrix metalloproteinase 2 and 9. These results revealed that miR-145-5p mimic mediated epithelial mesenchymal transition. Meanwhile, miR-145-5p mimic enhanced the level of caspase 9, which is an important promoter of apoptosis. Conclusions: These results indicate that miR-145-5p mimic could inhibit the progress of prostate cancer bone metastasis via regulation of epithelial mesenchymal transition. In addition, miR-145-5p mimic could induce the apoptosis of prostate cancer cells with bone metastases. In summary, the miR-145-5p mimic is expected to become a novel strategy for the treatment of tumor metastasis.


2015 ◽  
Vol 1 (3) ◽  
pp. 187-193 ◽  
Author(s):  
Humaira Masood ◽  
Ruochen Che ◽  
Aihua Zhang

Background: The inflammasome is a complex of proteins in the cytoplasm that consists of three main components: a sensor protein (receptor), an adapter protein and caspase-1. Inflammasomes are the critical components of innate immunity and have been gradually recognized as a critical mediator in various autoimmune diseases; also, their role in chronic kidney disease and acute kidney injury has been gradually accepted. Summary: Inflammasomes triggered by infectious or sterile injuries transfer proinflammatory mediators into mature ones through innate danger-signaling platforms. Information on inflammasomes in kidney disease will help to uncover the underlying mechanisms of nephropathy and provide novel therapeutic targets in the future. Key Messages: The inflammasomes can be activated by a series of exogenous and endogenous stimuli, including pathogen-and danger-associated molecular patterns released from or caused by damaged cells. The NACHT, LRR and PYD domain-containing protein 3 (NLRP3) in the kidney exerts its effect not only by the ‘canonical' pathway of IL-1β and IL-18 secretion but also by ‘noncanonical' pathways, such as tumor growth factor-β signaling, epithelial-mesenchymal transition and fibrosis. In both clinical and experimental data, the NLRP3 inflammasome was reported to be involved in the pathogenesis of chronic kidney disease and acute kidney injury. However, the underlying mechanisms are not fully understood. Therapies targeting the activation of the NLRP3 inflammasome or blocking its downstream effectors appear attractive for the pursuit of neuropathy treatments.


2003 ◽  
Vol 88 (1) ◽  
pp. 363-370 ◽  
Author(s):  
E. Karteris ◽  
A. Goumenou ◽  
E. Koumantakis ◽  
E. W. Hillhouse ◽  
D. K. Grammatopoulos

Placentally derived CRH seems to play a major role in the mechanisms controlling human pregnancy and parturition, via activation of specific receptors widespread in reproductive tissues. In the human placenta, CRH seems to modulate vasodilation, prostaglandin production, and ACTH secretion. It has also been suggested that CRH might act as a placental clock, determining the length of gestation. In addition, maternal plasma CRH concentrations are further elevated in pregnancies associated with abnormal placental function, such as preeclampsia and intrauterine growth retardation (IUGR). In this study, we sought to investigate the expression of CRH-R1α levels in placentas from women who have undergone normal deliveries (control group) and patients who have been diagnosed as having preeclampsia or IUGR. Results showed that placental CRH-R1α mRNA levels (as shown by quantitative RT-PCR) and protein levels (shown by Western blotting analysis) were significantly (P < 0.05) reduced in all of the complicated pregnancies. In contrast, levels of the angiotensin II receptor were elevated in preeclampsia and reduced in IUGR subjects, as shown by RT-PCR and Western blotting analysis. These findings might suggest that changes in receptor expression may contribute toward dysregulation of the dynamic balance controlling vascular resistance.


2019 ◽  
Vol 12 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Lisha Xie ◽  
Tao Jiang ◽  
Ailan Cheng ◽  
Ting Zhang ◽  
Pin Huang ◽  
...  

Background: Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear. Methods: Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay. Results: miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC. Conclusion: Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.


Sign in / Sign up

Export Citation Format

Share Document