scholarly journals Effects of Allium cepa and Its Constituents on Respiratory and Allergic Disorders: A Comprehensive Review of Experimental and Clinical Evidence

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Sima Beigoli ◽  
Sepideh Behrouz ◽  
Arghavan Memar zia ◽  
Seyyedeh Zahra Ghasemi ◽  
Marzie Boskabady ◽  
...  

The health benefits of Allium cepa (A. cepa) have been proclaimed for centuries. Various pharmacological and therapeutic effects on respiratory, allergic, and immunologic disorders are shown by A. cepa and its constituents. Flavonoids such as quercetin and kaempferol, alk(en)yl cysteine sulfoxides including S-methyl cysteine sulfoxide and S-propyl cysteine sulfoxide, cycloalliin, thiosulfinates, and sulfides are the main compounds of the plant. A. cepa displays broad-spectrum pharmacological activities including antioxidant, anti-inflammatory, antihypertensive, and antidiabetic effects. Our objective in this review is to present the effects of A. cepa and its constituents on respiratory, allergic, and immunologic disorders. Different online databases were searched to find articles related to the effect of A. cepa extracts and its constituents on respiratory, allergic, and immunologic disorders until the end of December 2020 using keywords such as onion, A. cepa, constituents of A. cepa, therapeutic effects and pharmacological effects, and respiratory, allergic, and immunologic disorders. Extracts and constituents of A. cepa showed tracheal smooth muscle relaxant effects, indicating possible bronchodilator activities or relieving effects on obstructive respiratory diseases. In experimental animal models of different respiratory diseases, the preventive effect of various extracts and constituents of A. cepa was induced by their antioxidant, immunomodulatory, and anti-inflammatory effects. The preventive effects of the plant and its components on lung disorders induced by exposure to noxious agents as well as lung cancer, lung infection, and allergic and immunologic disorders were also indicated in the experimental and clinical studies. Therefore, this review may be considered a scientific basis for development of therapies using this plant, to improve respiratory, allergic, and immunologic disorders.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xinwen Zhang ◽  
Zhou Wu ◽  
Yicong Liu ◽  
Junjun Ni ◽  
Chunfu Deng ◽  
...  

TJ-20 is a formula consisting of 6 herbs that has been used in the clinical treatment of rheumatoid arthritis (RA) in China and Japan for centuries. However, scientific evidence of the effects of TJ-20 has not been established. In the present study, we focused on the therapeutic effects and investigated the main function of TJ-20 on adjuvant arthritis (AA), an animal model of RA, which was induced with complete Freund’s adjuvant (CFA). TJ-20 was administered orally at 600 mg/kg once a day from 0, 7, and 10 days to 8 weeks after the CFA treatment. TJ-20 significantly ameliorated inflammatory progression and bone destruction in AA in a time-dependent manner. Furthermore, TJ-20 significantly reduced the increased changes in a number of macrophages and helper T cells. Moreover, TJ-20 suppressed the expression of TNF-αwhereas it augmented the expression of IL-10 and attenuated Th1 cells responses in the synovia of the ankle joint. Therefore, TJ-20 regulated the expression of proinflammatory and anti-inflammatory cytokines in macrophages and Th1/Th2 balance in the synovia of ankle joints in AA rats. These results suggest the positive anti-inflammatory effect of TJ-20 and provide a scientific basis for the clinical use of TJ-20 for RA.


2019 ◽  
Vol 26 (24) ◽  
pp. 4506-4536 ◽  
Author(s):  
Iris E. Allijn ◽  
René P. Brinkhuis ◽  
Gert Storm ◽  
Raymond M. Schiffelers

Traditionally, natural medicines have been administered as plant extracts, which are composed of a mixture of molecules. The individual molecular species in this mixture may or may not contribute to the overall medicinal effects and some may even oppose the beneficial activity of others. To better control therapeutic effects, studies that characterized specific molecules and describe their individual activity that have been performed over the past decades. These studies appear to underline that natural products are particularly effective as antioxidants and anti-inflammatory agents. In this systematic review we aimed to identify potent anti-inflammatory natural products and relate their efficacy to their chemical structure and physicochemical properties. To identify these compounds, we performed a comprehensive literature search to find those studies, in which a dose-response description and a positive control reference compound was used to benchmark the observed activity. Of the analyzed papers, 7% of initially selected studies met these requirements and were subjected to further analysis. This analysis revealed that most selected natural products indeed appeared to possess anti-inflammatory activities, in particular anti-oxidative properties. In addition, 14% of the natural products outperformed the remaining natural products in all tested assays and are attractive candidates as new anti-inflammatory agents.


2020 ◽  
Vol 28 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Atefeh Amiri ◽  
Maryam Mahjoubin-Tehran ◽  
Zatollah Asemi ◽  
Alimohammad Shafiee ◽  
Sarah Hajighadimi ◽  
...  

: Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.


Author(s):  
Mohamad Reza Nikouei Moghaddam ◽  
Monireh Movahedi ◽  
Maryam Bananej ◽  
Soheil Najafi ◽  
Nahid Beladi Moghadam ◽  
...  

Background: Multiple sclerosis is an autoimmune chronic inflammatory disease of the central nervous system that can lead to some serious disabilities. Despite using various immunomodulatory and anti-inflammatory drugs that have therapeutic effects, they cannot reduce its progression completely, and have some unwanted side effects too. The immunomodulatory and anti-inflammatory effects of the β-D-Mannuronic acid [M2000] have been proven in several surveys, and the present research was designed to determine its toxicity and therapeutic effects in MS patients. Methods: This study was performed on 15 MS patients who took 25 mg/kg/day the oral form of the β-D-Mannuronic acid for six months, and 15 healthy people as a control group. Serum levels of Urea, Creatinine, GGT, Vitamin D3, Uric acid, and Anti-Phospholipids were compared to evaluate the therapeutic and possible toxic effects of this drug after this period. Results: Non- toxic effects through the study of Urea, Creatinine, GGT, and non-significant changes in Uric acid and AntiPhospholipids levels, besides a significant rise in Vitamin, D3 levels in the M2000 treated cases were found. Conclusions: Our results suggested that β-D-Mannuronic acid is a safe drug and has no toxicity when administered orally and also has some therapeutic effects in MS patients.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2745
Author(s):  
Peng Du ◽  
Jia Song ◽  
Huirui Qiu ◽  
Haorui Liu ◽  
Li Zhang ◽  
...  

Shanxi-aged vinegar, a traditional Chinese grain-fermented food that is rich in polyphenols, has been shown to have therapeutic effects on a variety of diseases. However, there has been no comprehensive evaluation of the anti-inflammatory activity of polyphenols extracted from Shanxi-aged vinegar (SAVEP) to date. The anti-inflammatory activities of SAVEP, both in RAW 264.7 macrophages and mice, were extensively investigated for the potential application of SAVEP as a novel anti-inflammatory agent. In order to confirm the notion that polyphenols could improve inflammatory symptoms, SAVEP was firstly detected by gas chromatography mass spectrometry (GC-MS). In total, 19 polyphenols were detected, including 12 phenolic acids. The study further investigated the protective effect of SAVEP on lipopolysaccharide-induced inflammation in RAW264.7 macrophages and ICR mice. The results showed that compared with those of the model group, SAVEP could remarkably recover the inflammation of macrophage RAW264.7 and ICR mice. SAVEP can normalise the expression of related proteins via the suppression of MAPK/NF-κB pathway activation, inhibiting the expression of iNOS and COX-2 proteins, and consequently the production of inflammatory factors, thus alleviating inflammatory stress. These results suggest that SAVEP may have a potential function against inflammation.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jiaqi Wang ◽  
Shanshan Lu ◽  
Fuming Yang ◽  
Yi Guo ◽  
Zelin Chen ◽  
...  

AbstractAcupuncture is used in the treatment of a variety of inflammatory conditions and diseases. However, the mechanisms of its anti-inflammatory action are complex and have not been systematically investigated. Macrophages are key components of the innate immune system, thus, balancing the M1/M2 macrophage ratio and modulating cytokine levels in the inflammatory environment may be desirable therapeutic goals. Evidence has shown that acupuncture has anti-inflammatory actions that affect multiple body systems, including the immune, locomotory, endocrine, nervous, digestive, and respiratory systems, by downregulating pro-inflammatory M1 and upregulating anti-inflammatory M2 macrophages, as well as by modulating associated cytokine secretion. Macrophage polarization is controlled by the interlocking pathways of extrinsic factors, the local tissue microenvironment, and the neural-endocrine-immune systems. It has been suggested that polarization of T lymphocytes and cytokine secretions resulting in modulation of the autonomic nervous system and the hypothalamic–pituitary–adrenal axis, may be upstream mechanisms of acupuncture-induced macrophage polarization. We further propose that macrophage polarization could be the principal pathway involved in acupuncture immune regulation and provide the scientific basis for the clinical application of acupuncture in inflammatory conditions.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lu Wang ◽  
Yafei Rao ◽  
Xiali Liu ◽  
Liya Sun ◽  
Jiameng Gong ◽  
...  

Abstract Background Uncontrolled inflammation is a central problem for many respiratory diseases. The development of potent, targeted anti-inflammatory therapies to reduce lung inflammation and re-establish the homeostasis in the respiratory tract is still a challenge. Previously, we developed a unique anti-inflammatory nanodrug, P12 (made of hexapeptides and gold nanoparticles), which can attenuate Toll-like receptor-mediated inflammatory responses in macrophages. However, the effect of the administration route on its therapeutic efficacy and tissue distribution remained to be defined. Results In this study, we systematically compared the effects of three different administration routes [the intratracheal (i.t.), intravenous (i.v.) and intraperitoneal (i.p.)] on the therapeutic activity, biodistribution and pulmonary cell targeting features of P12. Using the LPS-induced ALI mouse model, we found that the local administration route via i.t. instillation was superior in reducing lung inflammation than the other two routes even treated with a lower concentration of P12. Further studies on nanoparticle biodistribution showed that the i.t. administration led to more accumulation of P12 in the lungs but less in the liver and other organs; however, the i.v. and i.p. administration resulted in more nanoparticle accumulation in the liver and lymph nodes, respectively, but less in the lungs. Such a lung favorable distribution was also determined by the unique surface chemistry of P12. Furthermore, the inflammatory condition in the lung could decrease the accumulation of nanoparticles in the lung and liver, while increasing their distribution in the spleen and heart. Interestingly, the i.t. administration route helped the nanoparticles specifically target the lung macrophages, whereas the other two administration routes did not. Conclusion The i.t. administration is better for treating ALI using nanodevices as it enhances the bioavailability and efficacy of the nanodrugs in the target cells of the lung and reduces the potential systematic side effects.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3054
Author(s):  
Bruna Araujo Sousa ◽  
Osmar Nascimento Silva ◽  
William Farias Porto ◽  
Thales Lima Rocha ◽  
Luciano Paulino Silva ◽  
...  

Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for thousands of years. In Brazilian folk medicine, plant extracts from the bamboo plant Guadua paniculata Munro have been used for the treatment of infections and pain. However, the chemical basis of these therapeutic effects has not yet been identified. Here, we performed protein biochemistry and downstream pharmacological assays to determine the mechanisms underlying the anti-inflammatory and antinociceptive effects of an aqueous extract of the G. paniculata rhizome, which we termed AqGP. The anti-inflammatory and antinociceptive effects of AqGP were assessed in mice. We identified and purified a protein (AgGP), with an amino acid sequence similar to that of thaumatins (~20 kDa), capable of repressing inflammation through downregulation of neutrophil recruitment and of decreasing hyperalgesia in mice. In conclusion, we have identified the molecule and the molecular mechanism responsible for the anti-inflammatory and antinociceptive properties of a plant commonly used in Brazilian folk medicine.


Sign in / Sign up

Export Citation Format

Share Document