scholarly journals The Protective Effects of Water Extracts of Compound Turmeric Recipe on Acute Alcoholism: An Experimental Research Using a Mouse Model

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xian-ting Liang ◽  
Yan-yan Wang ◽  
Xiao-yu Hu ◽  
Shao-bo Wang

Acute alcoholism (AAI) is a common emergency. Currently, there is a lack of preventive and therapeutic drugs with superior safety and efficacy. Curcuma longa, Panax ginseng, Pueraria lobata, Pueraria flower, and Hovenia dulcis Thunb., which are the components of compound turmeric recipe (CTR), are, respectively, used in China as adjuvant therapeutic agents for AAI and alcoholic liver injury, respectively. The purpose of this research was to investigate the effect of traditional compound turmeric recipe in anti-inebriation treatment and to identify its underlying mechanisms. The mice were administered with CTR mixture, and ethanol was subsequently given to mice by gavage. The effects of CTR on the righting reflex, 24-hour survival, drunken behavior, blood ethanol concentration, and pathological changes of liver are depicted. The activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were detected. Besides, the activities of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), cytochrome P450 (P450), superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver and the levels of β-endorphin (β-EP) and leucine enkephalin (LENK) in the brain were also measured. Our results demonstrated that CTR can increase the activities of ADH, ALDH, P450, and SOD and decrease the contents of TNF-α, IL-8, and MDA in the liver. In addition, it can decrease the activities of ALT, AST, and ALP in serum and β-EP and LENK activities in the brain. CTR showed effects on prevention of acute alcoholism, promoting wakefulness, and alleviating alcoholic liver injury, which were likely mediated by the above mechanisms.

1999 ◽  
Vol 277 (3) ◽  
pp. G702-G708 ◽  
Author(s):  
Alix de la Coste ◽  
Monique Fabre ◽  
Nathalie McDonell ◽  
Arlette Porteu ◽  
Helène Gilgenkrantz ◽  
...  

Fas ligand (CD95L) and tumor necrosis factor-α (TNF-α) are pivotal inducers of hepatocyte apoptosis. Uncontrolled activation of these two systems is involved in several forms of liver injury. Although the broad antiapoptotic action of Bcl-2 and Bcl-xL has been clearly established in various apoptotic pathways, their ability to inhibit the Fas/CD95- and TNF-α-mediated apoptotic signal has remained controversial. We have demonstrated that the expression of BCL-2 in hepatocytes protects them against Fas-induced fulminant hepatitis in transgenic mice. The present study shows that transgenic mice overexpressing[Formula: see text]in hepatocytes are also protected from Fas-induced apoptosis in a dose-dependent manner. Bcl-xL and Bcl-2 were protective without any change in the level of endogenous[Formula: see text]or Bax and inhibited hepatic caspase-3-like activity. In vivo injection of TNF-α caused massive apoptosis and death only when transcription was inhibited. Under these conditions,[Formula: see text]mice were partially protected from liver injury and death but PK-BCL-2 mice were not. A similar differential protective effect of Bcl-xL and Bcl-2 transgenes was observed when Fas/CD95 was activated and transcription blocked. These results suggest that apoptosis triggered by activation of both Fas/CD95 and TNF-α receptors is to some extent counteracted by the transcription-dependent protective effects, which are essential for the antiapoptotic activity of Bcl-2 but not of Bcl-xL. Therefore, Bcl-xL and Bcl-2 appear to have different antiapoptotic effects in the liver whose characterization could facilitate their use to prevent the uncontrolled apoptosis of hepatocytes.


Author(s):  
Abacuc Valansa ◽  
Borris Rosnay Tietcheu Galani ◽  
Pascal Dieudonne Djamen Chuisseu ◽  
Armelle Tontsa Tsamo ◽  
Vincent Brice Ayissi Owona ◽  
...  

AbstractBackgroundAlcoholic liver disease (ALD) is regarded as a global health problem with limited therapeutic options. Previous studies highlighted some anticancer, antiviral, and hepatoprotective activities of limonoids, but the effects of these compounds on ALD remain unknown. The present study aimed to evaluate the effect of some natural limonoids on ethanol-induced liver injury.MethodsThirty-five albino mice (Mus musculus) were administered with 40% ethanol in the presence or absence of the different limonoids [including three havanensin-type limonoids, TS1, TS3, Rubescin D isolated from an African medicinal plant, Trichilia rubescens Oliv. (Meliaceae), and one limonin], or silymarin at 50 mg/kg for 3 days. Thereafter, the effect of the most active compound was evaluated in a chronic model of ALD. For this purpose, 24 mice with each group consisting of six mice were administered orally with 40% ethanol and limonoid at different doses (50, 75, and 100 mg/kg) for 28 days. Finally, biochemical parameters such as alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), triglyceride (TG), and tumor necrosis factor α (TNF-α) levels were quantified in liver homogenates.ResultsAll tested limonoids significantly (p < 0.01) reduced ALT levels relative to the negative control in the acute model. However, in comparison to other limonoids, limonin at 50 and 75 mg/kg significantly reduced TG, MDA, and TNF-α levels (1.8-fold); alleviated leukocyte infiltration in liver tissue; significantly increased the activity of SOD; and decreased those of CAT better than silymarin used as a positive control at 50 mg/kg.ConclusionsThese data suggest that limonin possesses protective effects on long-term alcohol poisoning partially due to antioxidant and anti-inflammatory mechanisms.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7056
Author(s):  
Buyun Kim ◽  
Ki Yong Lee ◽  
Byoungduck Park

Alzheimer’s disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aβ) peptides. Aβ induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aβ-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3′,4′,5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aβ-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aβ-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aβ25–35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aβ25–35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aβ25–35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.


2021 ◽  
Vol 11 (5) ◽  
pp. 436
Author(s):  
Hung-Jen Shih ◽  
Chao-Yuan Chang ◽  
Milton Chiang ◽  
Van Long Le ◽  
Hao-Jen Hsu ◽  
...  

Three major cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, mediate endotoxemia-induced liver injury. With the similar structures to the binding domains of the three cytokines to their cognate receptors, the novel peptide KCF18 can simultaneously inhibit TNF-α, IL-1β, and IL-6. We elucidated whether KCF18 can alleviate injury of liver in endotoxemic mice. Adult male mice (BALB/cJ) were intraperitoneally (i.p.) administered lipopolysaccharide (LPS, 15 mg/kg; LPS group) or LPS with KCF18 (LKCF group). Mice in the LKCF group received KCF18 (i.p.) at 2 h (0.6 mg/kg), 4 h (0.3 mg/kg), 6 h (0.3 mg/kg), and 8 h (0.3mg/kg) after LPS administration. Mice were sacrificed after receiving LPS for 24 h. Our results indicated that the binding levels of the three cytokines to their cognate receptors in liver tissues in the LKCF group were significantly lower than those in the LPS group (all p < 0.05). The liver injury level, as measured by performing functional and histological analyses and by determining the tissue water content and vascular permeability (all p < 0.05), was significantly lower in the LKCF group than in the LPS group. Similarly, the levels of inflammation (macrophage activation, cytokine upregulation, and leukocyte infiltration), oxidation, necroptosis, pyroptosis, and apoptosis (all p < 0.05) in liver tissues in the LKCF group were significantly lower than those in the LPS group. In conclusion, the KCF18 peptide–based simultaneous inhibition of TNF-α, IL-1β, and IL-6 can alleviate liver injury in mice with endotoxemia.


2001 ◽  
Vol 281 (6) ◽  
pp. G1348-G1356 ◽  
Author(s):  
Amin A. Nanji ◽  
Kalle Jokelainen ◽  
Maryam Fotouhinia ◽  
Amir Rahemtulla ◽  
Peter Thomas ◽  
...  

Alcoholic liver injury is more severe and rapidly developing in women than men. To evaluate the reason(s) for these gender-related differences, we determined whether pathogenic mechanisms important in alcoholic liver injury in male rats were further upregulated in female rats. Male and age-matched female rats (7/group) were fed ethanol and a diet containing fish oil for 4 wk by intragastric infusion. Dextrose isocalorically replaced ethanol in control rats. We analyzed liver histopathology, lipid peroxidation, cytochrome P-450 (CYP)2E1 activity, nonheme iron, endotoxin, nuclear factor-κB (NF-κB) activation, and mRNA levels of cyclooxygenase-1 (COX-1) and COX-2, tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2). Alcohol-induced liver injury was more severe in female vs. male rats. Female rats had higher endotoxin, lipid peroxidation, and nonheme iron levels and increased NF-κB activation and upregulation of the chemokines MCP-1 and MIP-2. CYP2E1 activity and TNF-α and COX-2 levels were similar in male and female rats. Remarkably, female rats fed fish oil and dextrose also showed necrosis and inflammation. Our findings in ethanol-fed rats suggest that increased endotoxemia and lipid peroxidation in females stimulate NF-κB activation and chemokine production, enhancing liver injury. TNF-α and COX-2 upregulation are probably important in causing liver injury but do not explain gender-related differences.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Xin ◽  
Yue Jin ◽  
Xin Wang ◽  
Beiyu Cai ◽  
Ziming An ◽  
...  

The incidence of nonalcoholic steatohepatitis (NASH) is increasing worldwide. Activation of Kupffer cells (KCs) is central to the development of diet-induced NASH. We investigated whether a combination of two active chemical components, geniposide and chlorogenic acid (GC), at a specific ratio (67 : 1), ameliorates diet-induced NASH and the underlying mechanisms involved. C57BL/6J mice exposed to a high-fat and high-cholesterol (HFHC) diet containing cholesterol, choline, and high-sugar drinking water, as well as RAW264.7 cells stimulated with lipopolysaccharide (LPS) were studied. The combination exerted a therapeutic effect on HFHC-induced NASH in mice. Simultaneously, GC was found to reduce the expression of cytokines secreted by hepatic macrophages, including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), IL-1β, IL-6, monocyte chemotactic protein 1 (MCP-1), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Moreover, GC reduced the number of KCs expressing F4/80. Furthermore, TNF-α, inducible nitric oxide synthase (INOS), IL-1β, and IL-6 mRNA and TNF-α protein expression levels were suppressed upon GC treatment in RAW264.7 cells. Our findings suggest that GC has a strong anti-inflammatory effect in NASH, and this effect can be attributed to the suppression of KC activity in the liver.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Mazher Mohammed ◽  
Mona Elgazzaz ◽  
Clara Berdasco ◽  
Eric D Lazartigues

We previously reported that ADAM17 (aka tumor necrosis factor-α convertase) is critical for the development of hypertension in experimental models and patients. Recent studies highlighted that ADAM17’s formation of TNF-α relies on prior maturation of this sheddase, controlled by the rhomboid-like protein 2 (iRhom2) specifically in microglia. Genetic deletion of iRhom2 in mice shows significant attenuation of TNF-α and ADAM17 activity in a tissue specific manner. Here, we hypothesized that silencing iRhom2 activity specifically in the brain would decrease blood pressure (BP) in the DOCA-salt model of hypertension, in mice. Uninephrectomized mice were implanted subcutaneously (sc) with DOCA-pellets (50 mg) and provided with 1% saline in drinking water. In addition, mice were chronically implanted with an icv cannula connected to a sc osmotic minipump for delivery of: (1) iRhom2-siRNA (9.6 μg/kg/day), (2) scrambled siRNA (SCR 0.2 μg/kg/day), (3) ADAM17 antibody (ADAM17-Ab; 23.8 μg/kg/day) or (4) artificial cerebrospinal fluid (aCSF) for 2 weeks while BP was recorded by telemetry. DOCA-salt treatment led to a significant increase in BP in the control groups (SCR: 156 ±3 mmHg and aCSF: 161 ±1 mmHg; n=3/group; p<0.001) compared to baseline values (122 ±2 mmHg; n=12). ICV infusion of iRhom2-siRNA or ADAM17 neutralizing antibody for 2-weeks in DOCA-salt-treated mice resulted in a significant attenuation of BP (iRhom2-siRNA: 152 ±2 mmHg and ADAM17-Ab: 151 ±2 mmHg n=3/group, p<0.001). These data suggest that: 1) Selective silencing of iRhom2 from microglia is as potent as ADAM17 neutralization throughout the brain in lowering BP and 2) iRhom2 is a potential new therapeutic target for the treatment of salt-sensitive hypertension.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 558 ◽  
Author(s):  
Yhiya Amen ◽  
Asmaa E. Sherif ◽  
Noha M. Shawky ◽  
Rehab S. Abdelrahman ◽  
Michael Wink ◽  
...  

Grape (Vitis vinifera) leaf extracts (GLEs) are known to be rich in phenolic compounds that exert potent antioxidant effects. Given the vulnerability of the liver to oxidative damage, antioxidants have been proposed as therapeutic agents and coadjuvant drugs to ameliorate liver pathologies. The current study was designed to characterize secondary metabolites and investigate the hepatoprotective effects of GLE and its underlying mechanisms. The secondary metabolites were profiled using HPLC–PDA–ESI-MS, and forty-five compounds were tentatively identified. In experimental in vivo design, liver injury was induced by oral administration of high doses of ethanol (EtOH) for 12 days to male Sprague Dawley rats that were split into five different groups. Blood samples and livers were then collected, and used for various biochemical, immunohistochemical, and histopathological analyses. Results showed that GLE-attenuated liver injury and promoted marked hepatic antioxidant effects, in addition to suppressing the increased heat-shock protein-70 expression. Moreover, GLE suppressed EtOH-induced expression of nuclear factor-κB (NF-κB) p65 subunit and proinflammatory cytokine tumor necrosis factor-α. Caspase-3 and survivin were enhanced by EtOH intake and suppressed by GLE intake. Finally, EtOH-induced histopathological changes in liver sections were markedly normalized by GLE. In conclusion, our results suggested that GLE interferes with NF-κB signaling and induces antioxidant effects, which both play a role in attenuating apoptosis and associated liver injury in a model of EtOH-induced liver damage in rats.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2887 ◽  
Author(s):  
Jing-Yi Qiao ◽  
Han-Wei Li ◽  
Fu-Gang Liu ◽  
Yu-Cheng Li ◽  
Shuo Tian ◽  
...  

The present study was envisaged to investigate the chemical constituents and the intervention effects of Portulaca oleracea extract (POE) on acute alcoholic liver injury of rats. The chemical composition of POE was detected by high performance liquid chromatography (HPLC). Sixty male Wistar rats were divided into 6 groups: Normal control (NC) group, acute alcoholic liver injury model group (ALI), low, medium and high dose of POE (25, 50, 100 mg/kg) groups and bifendate (BF, 3.75 mg/kg) group. Each group was given by intragastrical administration for 7 days. Alcoholic liver injury was induced in the experimental model by administering 50% ethanol at 8 mL/kg and repeated administration after 6 h, for a period of 7 days. The results showed that pretreatment with POE significantly reduced the ethanol-elevated serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and triglyceride (TG). The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) in liver were enhanced followed by administration of POE, while the content of nitric oxide (NO) and malondialdehyde (MDA) was found to decrease. Hepatic content of tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) was also reduced by POE treatment. These results indicated that POE could increase the antioxidant capacity and relieve the inflammatory injury of the liver cells induced by ethanol. Meanwhile, in our study, POE reduced the expression of miR-122, acetyl coenzyme A carboxylase (ACC) 1 mRNA and protein and increased the expression of lipoprotein lipase (LPL) mRNA and protein in liver, which indicated that POE could improve the lipid metabolism disorder induced by ethanol. Our findings suggested that POE had protective effects on acute alcoholic liver injury of rats.


2005 ◽  
Vol 288 (1) ◽  
pp. G32-G38 ◽  
Author(s):  
Jiing Chyuan Luo ◽  
Vivian Yvonne Shin ◽  
Ying Hua Yang ◽  
William Ka Kei Wu ◽  
Yi Ni Ye ◽  
...  

TNF-α is a cytokine produced during gastric mucosal injury. We examined whether TNF-α could promote mucosal repair by stimulation of epithelial cell proliferation and explored further the underlying mechanisms in a rat gastric mucosal epithelial cell line (RGM-1). TNF-α treatment (1–10 ng/ml) for 12 or 24 h significantly increased cell proliferation but did not induce apoptosis in RGM-1 cells. TNF-α treatment significantly increased cytosolic phospholipase A2 and cyclooxygenase-2 (COX-2) protein expression and PGE2 level but did not affect the protein levels of EGF, basic fibroblast growth factor, and COX-1 in RGM-1 cells. The mRNA of TNF receptor (TNF-R) 2 but not of TNF-R1 was also increased. Dexamethasone dose dependently inhibited the stimulatory effect of TNF-α on cell proliferation, which was associated with a significant decrease in cellular COX-2 expression and PGE2 level. A selective COX-2 inhibitor 3-(3-fluorophenyl)-4-[4-(methylsulfonyl)phenyl]-5,5-dimethyl-5H-furan-2-one (DFU) by itself had no effect on basal cell proliferation but significantly reduced the stimulatory effect of TNF-α on RMG-1 cells. Combination of dexamethasone and DFU did not produce an additive effect. PGE2 significantly reversed the depressive action of dexamethasone on cell proliferation. These results suggest that TNF-α plays a regulatory role in epithelial cell repair in the gastric mucosa via the TNF-α receptor and activation of the arachidonic acid/PG pathway.


Sign in / Sign up

Export Citation Format

Share Document