scholarly journals Isoorientin Inhibits Amyloid β25–35-Induced Neuronal Inflammation in BV2 Cells by Blocking the NF-κB Signaling Pathway

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7056
Author(s):  
Buyun Kim ◽  
Ki Yong Lee ◽  
Byoungduck Park

Alzheimer’s disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aβ) peptides. Aβ induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aβ-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3′,4′,5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aβ-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aβ-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aβ25–35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aβ25–35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aβ25–35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xian-ting Liang ◽  
Yan-yan Wang ◽  
Xiao-yu Hu ◽  
Shao-bo Wang

Acute alcoholism (AAI) is a common emergency. Currently, there is a lack of preventive and therapeutic drugs with superior safety and efficacy. Curcuma longa, Panax ginseng, Pueraria lobata, Pueraria flower, and Hovenia dulcis Thunb., which are the components of compound turmeric recipe (CTR), are, respectively, used in China as adjuvant therapeutic agents for AAI and alcoholic liver injury, respectively. The purpose of this research was to investigate the effect of traditional compound turmeric recipe in anti-inebriation treatment and to identify its underlying mechanisms. The mice were administered with CTR mixture, and ethanol was subsequently given to mice by gavage. The effects of CTR on the righting reflex, 24-hour survival, drunken behavior, blood ethanol concentration, and pathological changes of liver are depicted. The activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were detected. Besides, the activities of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), cytochrome P450 (P450), superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver and the levels of β-endorphin (β-EP) and leucine enkephalin (LENK) in the brain were also measured. Our results demonstrated that CTR can increase the activities of ADH, ALDH, P450, and SOD and decrease the contents of TNF-α, IL-8, and MDA in the liver. In addition, it can decrease the activities of ALT, AST, and ALP in serum and β-EP and LENK activities in the brain. CTR showed effects on prevention of acute alcoholism, promoting wakefulness, and alleviating alcoholic liver injury, which were likely mediated by the above mechanisms.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Xin ◽  
Yue Jin ◽  
Xin Wang ◽  
Beiyu Cai ◽  
Ziming An ◽  
...  

The incidence of nonalcoholic steatohepatitis (NASH) is increasing worldwide. Activation of Kupffer cells (KCs) is central to the development of diet-induced NASH. We investigated whether a combination of two active chemical components, geniposide and chlorogenic acid (GC), at a specific ratio (67 : 1), ameliorates diet-induced NASH and the underlying mechanisms involved. C57BL/6J mice exposed to a high-fat and high-cholesterol (HFHC) diet containing cholesterol, choline, and high-sugar drinking water, as well as RAW264.7 cells stimulated with lipopolysaccharide (LPS) were studied. The combination exerted a therapeutic effect on HFHC-induced NASH in mice. Simultaneously, GC was found to reduce the expression of cytokines secreted by hepatic macrophages, including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), IL-1β, IL-6, monocyte chemotactic protein 1 (MCP-1), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Moreover, GC reduced the number of KCs expressing F4/80. Furthermore, TNF-α, inducible nitric oxide synthase (INOS), IL-1β, and IL-6 mRNA and TNF-α protein expression levels were suppressed upon GC treatment in RAW264.7 cells. Our findings suggest that GC has a strong anti-inflammatory effect in NASH, and this effect can be attributed to the suppression of KC activity in the liver.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Mazher Mohammed ◽  
Mona Elgazzaz ◽  
Clara Berdasco ◽  
Eric D Lazartigues

We previously reported that ADAM17 (aka tumor necrosis factor-α convertase) is critical for the development of hypertension in experimental models and patients. Recent studies highlighted that ADAM17’s formation of TNF-α relies on prior maturation of this sheddase, controlled by the rhomboid-like protein 2 (iRhom2) specifically in microglia. Genetic deletion of iRhom2 in mice shows significant attenuation of TNF-α and ADAM17 activity in a tissue specific manner. Here, we hypothesized that silencing iRhom2 activity specifically in the brain would decrease blood pressure (BP) in the DOCA-salt model of hypertension, in mice. Uninephrectomized mice were implanted subcutaneously (sc) with DOCA-pellets (50 mg) and provided with 1% saline in drinking water. In addition, mice were chronically implanted with an icv cannula connected to a sc osmotic minipump for delivery of: (1) iRhom2-siRNA (9.6 μg/kg/day), (2) scrambled siRNA (SCR 0.2 μg/kg/day), (3) ADAM17 antibody (ADAM17-Ab; 23.8 μg/kg/day) or (4) artificial cerebrospinal fluid (aCSF) for 2 weeks while BP was recorded by telemetry. DOCA-salt treatment led to a significant increase in BP in the control groups (SCR: 156 ±3 mmHg and aCSF: 161 ±1 mmHg; n=3/group; p<0.001) compared to baseline values (122 ±2 mmHg; n=12). ICV infusion of iRhom2-siRNA or ADAM17 neutralizing antibody for 2-weeks in DOCA-salt-treated mice resulted in a significant attenuation of BP (iRhom2-siRNA: 152 ±2 mmHg and ADAM17-Ab: 151 ±2 mmHg n=3/group, p<0.001). These data suggest that: 1) Selective silencing of iRhom2 from microglia is as potent as ADAM17 neutralization throughout the brain in lowering BP and 2) iRhom2 is a potential new therapeutic target for the treatment of salt-sensitive hypertension.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4359
Author(s):  
Qi Zhang ◽  
Jing Zhou ◽  
Mi Shen ◽  
Hui Xu ◽  
Shu Yu ◽  
...  

Neuroinflammation is a feature common to neurodegenerative diseases, such as Parkinson’s disease (PD), which might be responsive to therapeutic intervention. Rotenone has been widely used to establish PD models by inducing mitochondrial dysfunction and inflammation. Our previous studies have reported that pyrroloquinoline quinone (PQQ), a naturally occurring redox cofactor, could prevent mitochondrial dysfunction in rotenone induced PD models by regulating mitochondrial functions. In the present study, we aimed to investigate the effect of PQQ on neuroinflammation and the mechanism involved. BV2 microglia cells were pre-treated with PQQ followed by rotenone incubation. The data showed that PQQ did not affect the cell viability of BV2 cells treated with rotenone, while the conditioned medium (CM) of BV2 cells pre-treated with PQQ significantly increased cell viability of SH-SY5Y cells. In rotenone-treated BV2 cells, PQQ dose-dependently decreased lactate dehydrogenase (LDH) release and suppressed the up-regulation of pro-inflammation factors, such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in the cultured media, as well as nitric oxide (NO) release induced by rotenone. PQQ pretreatment also increased the ratio of LC3-II/LC3-I and expression of Atg5 in BV2 cells stimulated with rotenone. Additionally, the autophagosome observed by transmission electron microscopy (TEM) and co-localization of mitochondria with lysosomes indicated that mitophagy was induced by PQQ in rotenone-injured BV2 cells, and the PINK1/parkin mediated mitophagy pathway was regulated by PQQ. Further, autophagy inhibitor, 3-methyladenine (3-MA), partially abolished the neuroprotective effect of PQQ and attenuated the inhibition of inflammation with PQQ pretreatment. Taken together, our data extend our understanding of the neuroprotective effect of PQQ against rotenone-induced injury and provide evidence that autophagy enhancement might be a novel therapeutic strategy for PD treatment.


2006 ◽  
Vol 18 (2) ◽  
pp. 175
Author(s):  
B. Loureiro ◽  
A. M. Brad ◽  
P. J. Hansen

Heat shock and tumor necrosis factor-α (TNF-α) can increase apoptosis in bovine embryos in a developmental-dependent manner. It was hypothesized that addition of the caspase-9 inhibitor, z-LEHD-fmk, would block induction of apoptosis caused by heat shock of 41°C and TNF-α. Furthermore, it was hypothesized that the magnitude of induced apoptosis would increase with stage of development. Embryos were collected on day 4, 5, and 6 after in vitro insemination and were cultured for 24 h in the presence of either 100 μm z-LEHD-fmk reconstituted in 0.5% (v/v) dimethyl sulfoxide or vehicle dimethyl sulfoxide at either (1) 38.5°C for 24 h (control), (2) 41°C for 15 h followed by 38.5°C for 9 h, or (3) 38.5°C for 24 h with 10 ng/mL murine TNF-α. Embryos were then fixed, and the proportion of blastomeres undergoing apoptosis was determined using TUNEL labeling. Heat shock did not increase the percentage of blastomeres that were TUNEL-positive (% apoptosis) at day 4 (n = 100 embryos total). In contrast, heat shock increased % apoptosis at day 5 and day 6 (P < 0.04) and this effect was blocked by z-LEHD-fmk (temperature × inhibitor, P < 0.04). At day 5, % apoptosis in the absence and presence of z-LEHD-fmk was 3.8 ± 1.9% and 3.7 ± 1.7% at 38.5°C vs. 8.9 ± 1.5% and 4.1 ± 1.7% at 41°C (n = 75 embryos total). At day 6, % apoptosis in the absence and presence of z-LEHD-fmk was 3.6 ± 1.1% and 3.7 ± 1.2% at 38.5°C vs. 11.1 ± 1.1% and 6.1 ± 1.2% at 41°C (n = 168 embryos total). Mean cell number at the end of culture ranged from 21 to 26 cells at day 4, 43 to 73 cells at day 5, and 101 to 114 cells at day 6. Treatment with TNF-α also increased apoptosis at all days (P < 0.01), and z-LEHD-fmk blocked this effect (TNF × inhibitor, P = 0.05; n = 361 embryos total). Across days, % apoptosis was 3.6 ± 1.4% (control), 3.3 ± 1.3% (inhibitor), 11.1 ± 1.3% (TNF-α), and 6.0 ± 1.4% (TNF-α + inhibitor). Mean cell number at the end of culture ranged from 21 to 27 cells at day 4, 59 to 74 cells at day 5, and 105 to 115 cells at day 6. In conclusion, activation of caspase-9 dependent pathways is involved in the induction of apoptosis by heat shock and TNF-α. Moreover, the magnitude of induced apoptosis increases as embryos advance in development. This work was supported by USDA Grant No. 2004–34135–14715 and BARD Grant No. US–3551–04.


1999 ◽  
Vol 277 (3) ◽  
pp. G702-G708 ◽  
Author(s):  
Alix de la Coste ◽  
Monique Fabre ◽  
Nathalie McDonell ◽  
Arlette Porteu ◽  
Helène Gilgenkrantz ◽  
...  

Fas ligand (CD95L) and tumor necrosis factor-α (TNF-α) are pivotal inducers of hepatocyte apoptosis. Uncontrolled activation of these two systems is involved in several forms of liver injury. Although the broad antiapoptotic action of Bcl-2 and Bcl-xL has been clearly established in various apoptotic pathways, their ability to inhibit the Fas/CD95- and TNF-α-mediated apoptotic signal has remained controversial. We have demonstrated that the expression of BCL-2 in hepatocytes protects them against Fas-induced fulminant hepatitis in transgenic mice. The present study shows that transgenic mice overexpressing[Formula: see text]in hepatocytes are also protected from Fas-induced apoptosis in a dose-dependent manner. Bcl-xL and Bcl-2 were protective without any change in the level of endogenous[Formula: see text]or Bax and inhibited hepatic caspase-3-like activity. In vivo injection of TNF-α caused massive apoptosis and death only when transcription was inhibited. Under these conditions,[Formula: see text]mice were partially protected from liver injury and death but PK-BCL-2 mice were not. A similar differential protective effect of Bcl-xL and Bcl-2 transgenes was observed when Fas/CD95 was activated and transcription blocked. These results suggest that apoptosis triggered by activation of both Fas/CD95 and TNF-α receptors is to some extent counteracted by the transcription-dependent protective effects, which are essential for the antiapoptotic activity of Bcl-2 but not of Bcl-xL. Therefore, Bcl-xL and Bcl-2 appear to have different antiapoptotic effects in the liver whose characterization could facilitate their use to prevent the uncontrolled apoptosis of hepatocytes.


1999 ◽  
Vol 276 (3) ◽  
pp. F390-F397 ◽  
Author(s):  
Yan-Lin Guo ◽  
Baobin Kang ◽  
Li-Jun Yang ◽  
John R. Williamson

It has been proposed that ceramide acts as a cellular messenger to mediate tumor necrosis factor-α (TNF-α)-induced apoptosis. Based on this hypothesis, it was postulated that resistance of some cells to TNF-α cytotoxicity was due to an insufficient production of ceramide on stimulation by TNF-α. The present study was initiated to investigate whether this was the case in mesangial cells, which normally are insensitive to TNF-α-induced apoptosis. Our results indicate that although C2ceramide was toxic to mesangial cells, the cell death it induced differed both morphologically and biochemically from that induced by TNF-α in the presence of cycloheximide (CHX). The most apparent effect of C2ceramide was to cause cells to swell, followed by disruption of the cell membrane. It is evident that C2ceramide caused cell death by necrosis, whereas TNF-α in the presence of CHX killed the cells by apoptosis. C2ceramide did not mimic the effects of TNF-α on the activation of c-Jun NH2-terminal protein kinase and nuclear factor-κB transcription factor. Although mitogen-activated protein kinase [extracellular signal-related kinase (ERK)] was activated by both C2ceramide and TNF-α, such activation appeared to be mediated by different mechanisms as judged from the kinetics of ERK activation. Furthermore, the cleavage of cytosolic phospholipase A2during cell death induced by C2ceramide and by TNF-α in the presence of CHX showed distinctive patterns. The present study provides evidence that apoptosis and necrosis use distinctive signaling machinery to cause cell death.


2005 ◽  
Vol 288 (1) ◽  
pp. G32-G38 ◽  
Author(s):  
Jiing Chyuan Luo ◽  
Vivian Yvonne Shin ◽  
Ying Hua Yang ◽  
William Ka Kei Wu ◽  
Yi Ni Ye ◽  
...  

TNF-α is a cytokine produced during gastric mucosal injury. We examined whether TNF-α could promote mucosal repair by stimulation of epithelial cell proliferation and explored further the underlying mechanisms in a rat gastric mucosal epithelial cell line (RGM-1). TNF-α treatment (1–10 ng/ml) for 12 or 24 h significantly increased cell proliferation but did not induce apoptosis in RGM-1 cells. TNF-α treatment significantly increased cytosolic phospholipase A2 and cyclooxygenase-2 (COX-2) protein expression and PGE2 level but did not affect the protein levels of EGF, basic fibroblast growth factor, and COX-1 in RGM-1 cells. The mRNA of TNF receptor (TNF-R) 2 but not of TNF-R1 was also increased. Dexamethasone dose dependently inhibited the stimulatory effect of TNF-α on cell proliferation, which was associated with a significant decrease in cellular COX-2 expression and PGE2 level. A selective COX-2 inhibitor 3-(3-fluorophenyl)-4-[4-(methylsulfonyl)phenyl]-5,5-dimethyl-5H-furan-2-one (DFU) by itself had no effect on basal cell proliferation but significantly reduced the stimulatory effect of TNF-α on RMG-1 cells. Combination of dexamethasone and DFU did not produce an additive effect. PGE2 significantly reversed the depressive action of dexamethasone on cell proliferation. These results suggest that TNF-α plays a regulatory role in epithelial cell repair in the gastric mucosa via the TNF-α receptor and activation of the arachidonic acid/PG pathway.


Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4011-4018 ◽  
Author(s):  
Koji Yamamoto ◽  
Takayoshi Shimokawa ◽  
Hong Yi ◽  
Ken-ichi Isobe ◽  
Tetsuhito Kojima ◽  
...  

Hypercoagulability and thrombotic tendency are frequently induced by a variety of stressors. Clinically, aged subjects and obese patients are more susceptible to thrombotic diseases associated with stress, but the underlying mechanisms are unknown. We investigated the expression of a procoagulant gene, tissue factor (TF), in a mouse model of restraint stress. Twenty hours of restraint stress to mice caused a substantial induction of TF mRNA in several tissues. Importantly, the magnitude of induction of TF mRNA by restraint stress was larger in aged mice compared with young mice. In situ hybridization analysis of the stressed aged mice revealed that strong signals for TF mRNA were localized to renal epithelial cells, smooth muscle cells, adventitial cells, and adipocytes but not to vascular endothelial cells. These observations suggest that restraint stress induces the TF expression in a tissue-specific and cell type–specific manner. Genetically obese mice were also hyperresponsive to restraint stress in the induction of TF gene, especially in their livers and adipose tissues. Stress-induced microthrombi formation was pronounced in renal glomeruli and within the vasculature in adipose tissues of aged mice. Tumor necrosis factor-α (TNF-α) antigen in plasma was elevated by stress in aged mice and obese mice, and pretreatment of mice with anti–TNF-α antibody partially attenuated the stress-mediated induction of TF gene in adipose tissues in these mice. These results suggest that the induction of TF gene may increase the risk of stress-associated thrombosis in older and obese subjects and that TNF-α may be involved.


Sign in / Sign up

Export Citation Format

Share Document