scholarly journals Ultrasound May Suppress Tumor Growth, Inhibit Inflammation, and Establish Tolerogenesis by Remodeling Innatome via Pathways of ROS, Immune Checkpoints, Cytokines, and Trained Immunity/Tolerance

2021 ◽  
Vol 2021 ◽  
pp. 1-33
Author(s):  
Qian Yang ◽  
Ruijing Zhang ◽  
Peng Tang ◽  
Yu Sun ◽  
Candice Johnson ◽  
...  

Background. The immune mechanisms underlying low-intensity ultrasound- (LIUS-) mediated suppression of inflammation and tumorigenesis remain poorly determined. Methods. We used microarray datasets from the NCBI GEO DataSet repository and conducted comprehensive data-mining analyses, where we examined the gene expression of 1376 innate immune regulators (innatome genes (IGs) in cells treated with LIUS. Results. We made the following findings: (1) LIUS upregulates proinflammatory IGs and downregulates metastasis genes in cancer cells, and LIUS upregulates adaptive immunity pathways but inhibits danger-sensing and inflammation pathways and promote tolerogenic differentiation in bone marrow (BM) cells. (2) LIUS upregulates IGs encoded for proteins localized in the cytoplasm, extracellular space, and others, but downregulates IG proteins localized in nuclear and plasma membranes, and LIUS downregulates phosphatases. (3) LIUS-modulated IGs act partially via several important pathways of reactive oxygen species (ROS), reverse signaling of immune checkpoint receptors B7-H4 and BTNL2, inflammatory cytokines, and static or oscillatory shear stress and heat generation, among which ROS is a dominant mechanism. (4) LIUS upregulates trained immunity enzymes in lymphoma cells and downregulates trained immunity enzymes and presumably establishes trained tolerance in BM cells. (5) LIUS modulates chromatin long-range interactions to differentially regulate IGs expression in cancer cells and noncancer cells. Conclusions. Our analysis suggests novel molecular mechanisms that are utilized by LIUS to induce tumor suppression and inflammation inhibition. Our findings may lead to development of new treatment protocols for cancers and chronic inflammation.

2021 ◽  
Vol 7 (4) ◽  
pp. 75
Author(s):  
Eva Slabáková ◽  
Zuzana Kahounová ◽  
Jiřina Procházková ◽  
Karel Souček

Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.


Author(s):  
Qiong Luo ◽  
Suyun Zhang ◽  
Donghuan Zhang ◽  
Rui Feng ◽  
Nan Li ◽  
...  

Background: Gastric cancer(GC) is currently one of the major malignancies that threatens human lives and health. Anlotinib is a novel small-molecule that inhibits angiogenesis to exert anti-tumor effects. However, the function in gastric cancer is incompletely understood. Objective: The aim of the present study was to investigate the anti-tumor effects and molecular mechanisms of anlotinib combined with dihydroartemisinin (DHA) in SGC7901 gastric cancer cells. Method: Different concentrations of anlotinib and DHA were used to treat SGC7901 gastric cancer cells, after which cell proliferation was measured. Drug interactions of anlotinib and DHA were analyzed by the Chou-Talalay method with CompuSyn software. proliferation, apoptosis, invasion, migration, and angiogenesis were measured using the cell counting kit-8 (CCK8) assay, flow cytometry, Transwell invasion assays, scratch assays, and chicken chorioallantoic membrane (CAM) assays. proliferation-associated protein (Ki67), apoptosis-related protein (Bcl-2), and vascular endothelial growth factor A (VEGF-A) were quantified by Western bloting. Results: The combination of 2.5 μmol/L of anlotinib and 5 of μmol/L DHA was highly synergistic in inhibiting cell growth, significantly increased the apoptosis rate and suppressed obviously the invasion and migration capability and angiogenesis of gastric cancer cells. In addition, the expression levels of Ki67, Bcl-2, and VEGF-A, as well as angiogenesis, were significantly decreased in the Combination of drugs compared with in control and either drug alone. Conclusion: The combination of anlotinib and DHA showed synergistic antitumor activity, suggesting their potential in treating patients with gastric cancer.


Author(s):  
Saleh A. Almatroodi ◽  
Mansoor Ali Syed ◽  
Arshad Husain Rahmani

Background:: Curcumin, an active compound of turmeric spice is one of the most-studies natural compounds and have been widely recognized as chemopreventive agents. Several molecular mechanisms have been proven, curcumin and its analogs play a role in cancer prevention through modulating various cell signaling pathways as well as inhibition of carcinogenesis process. Objective:: To study the potential role of curcumin in the management of various types of cancer through modulating cell signalling molecules based on available literature and recent patents. Methods:: A wide-ranging literature survey was performed based on Scopus, PubMed, PubMed central and Google scholar for the implication of curcumin in cancer management along with special emphasis on human clinical trials. Moreover, patents were searched through www.google.com/patents, www.freepatentsonline.com and www.freshpatents.com. Result:: Recent studies based on cancer cells have proven that curcumin have potential effects against cancer cells, prevent the growth of cancer and act as cancer therapeutic agents. Besides, curcumin exerted anticancer effects through inducing apoptosis, activating tumor suppressor genes, cell cycle arrest, inhibiting tumor angiogenesis, initiation, promotion and progression stages of tumor. It was established that co-treatment of curcumin and anti-cancer drugs could induce apoptosis and also play a significant role in the suppression of the invasion and metastasis of cancer cells. Conclusion:: Accumulating evidences suggest that curcumin has potentiality to inhibit cancer growth, induced apoptosis and modulate various cell signalling pathways molecules. Well-designed clinical trials of curcumin based on human subjects are still needed to establish the bioavailability, mechanism of action, efficacy and safe dose in the management of various cancers.


2020 ◽  
Vol 19 (16) ◽  
pp. 1949-1965 ◽  
Author(s):  
Natalia Szkaradek ◽  
Daniel Sypniewski ◽  
Dorota Żelaszczyk ◽  
Sabina Gałka ◽  
Paulina Borzdziłowska ◽  
...  

Background: Natural plant metabolites and their semisynthetic derivatives have been used for years in cancer therapy. Xanthones are oxygenated heterocyclic compounds produced as secondary metabolites by higher plants, fungi or lichens. Xanthone core may serve as a template in the synthesis of many derivatives that have broad biological activities. Objective: This study synthesized a series of 17 new xanthones, and their anticancer potential was also evaluated. Methods: The anticancer potential was evaluated in vitro using a highly invasive T24 cancer cell line. Direct cytotoxic effects of the xanthones were established by IC50 estimation based on XTT assay. Results: 5 compounds of the total 17 showed significant cytotoxicity toward the studied cancer cultures and were submitted to further detailed analysis, including studies examining their influence on gelatinase A and B expression, as well as on the cancer cells migration and adhesion to an extracellular matrix. These analyses were carried out on five human tumor cell lines: A2780 (ovarian cancer), A549 (lung cancer), HeLa (cervical cancer), Hep G2 (liver cancer), and T24 (urinary bladder cancer). All the compounds, especially 4, showed promising anticancer activity: they exhibited significant cytotoxicity towards all the evaluated cell lines, including MCF-7 breast cancer, and hindered migration-motility activity of cancer cells demonstrating more potent activity than α-mangostin which served as a reference xanthone. Conclusion: These results suggest that our xanthone derivatives may be further analyzed in order to include them in cancer treatment protocols.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 795
Author(s):  
Lukas Gorecki ◽  
Martin Andrs ◽  
Jan Korabecny

Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 266
Author(s):  
Juan Alfonso Redondo ◽  
Romain Bibes ◽  
Alizée Vercauteren Drubbel ◽  
Benjamin Dassy ◽  
Xavier Bisteau ◽  
...  

Esophageal squamous cell carcinoma (eSCC) accounts for more than 85% cases of esophageal cancer worldwide and the 5-year survival rate associated with metastatic eSCC is poor. This low survival rate is the consequence of a complex mechanism of resistance to therapy and tumor relapse. To effectively reduce the mortality rate of this disease, we need to better understand the molecular mechanisms underlying the development of resistance to therapy and translate that knowledge into novel approaches for cancer treatment. The circadian clock orchestrates several physiological processes through the establishment and synchronization of circadian rhythms. Since cancer cells need to fuel rapid proliferation and increased metabolic demands, the escape from circadian rhythm is relevant in tumorigenesis. Although clock related genes may be globally repressed in human eSCC samples, PER2 expression still oscillates in some human eSCC cell lines. However, the consequences of this circadian rhythm are still unclear. In the present study, we confirm that PER2 oscillations still occur in human cancer cells in vitro in spite of a deregulated circadian clock gene expression. Profiling of eSCC cells by RNAseq reveals that when PER2 expression is low, several transcripts related to apoptosis are upregulated. Consistently, treating eSCC cells with cisplatin when PER2 expression is low enhances DNA damage and leads to a higher apoptosis rate. Interestingly, this process is conserved in a mouse model of chemically-induced eSCC ex vivo. These results therefore suggest that response to therapy might be enhanced in esophageal cancers using chronotherapy.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Navatha Shree Polavaram ◽  
Samikshan Dutta ◽  
Ridwan Islam ◽  
Arup K. Bag ◽  
Sohini Roy ◽  
...  

AbstractUnderstanding the role of neuropilin 2 (NRP2) in prostate cancer cells as well as in the bone microenvironment is pivotal in the development of an effective targeted therapy for the treatment of prostate cancer bone metastasis. We observed a significant upregulation of NRP2 in prostate cancer cells metastasized to bone. Here, we report that targeting NRP2 in cancer cells can enhance taxane-based chemotherapy with a better therapeutic outcome in bone metastasis, implicating NRP2 as a promising therapeutic target. Since, osteoclasts present in the tumor microenvironment express NRP2, we have investigated the potential effect of targeting NRP2 in osteoclasts. Our results revealed NRP2 negatively regulates osteoclast differentiation and function in the presence of prostate cancer cells that promotes mixed bone lesions. Our study further delineated the molecular mechanisms by which NRP2 regulates osteoclast function. Interestingly, depletion of NRP2 in osteoclasts in vivo showed a decrease in the overall prostate tumor burden in the bone. These results therefore indicate that targeting NRP2 in prostate cancer cells as well as in the osteoclastic compartment can be beneficial in the treatment of prostate cancer bone metastasis.


Sign in / Sign up

Export Citation Format

Share Document