scholarly journals The Mitochondrial-Associated Endoplasmic Reticulum Membrane and Its Role in Diabetic Nephropathy

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lihua Ni ◽  
Cheng Yuan

The mitochondrial-associated endoplasmic reticulum membrane (MAM) is located between the outer mitochondrial membrane and the endoplasmic reticulum membrane. The MAM is involved in a wide range of cellular functions, including calcium signaling, the division and fusion of mitochondria, endoplasmic reticulum stress, and the synthesis and transport of lipids. Recent studies have discovered that the MAM is involved in the pathogenesis of diabetic nephropathy (DN). In this article, we summarize the structure, function and role of the MAM in DN. We hope this study will provide clues and a theoretical basis for mechanistic and targeted drug research on DN.

2018 ◽  
Vol 53 ◽  
pp. 22-36 ◽  
Author(s):  
Habibollah Faraji ◽  
Reza Nedaeinia ◽  
Esmaeil Nourmohammadi ◽  
Bizan Malaekeh-Nikouei ◽  
Hamid Reza Sadeghnia ◽  
...  

Nanotechnology as a multidisciplinary and scientific innovation plays an important role in numerous biomedical applications, such as molecular imaging, biomarkers and biosensors and also drug delivery. A wide range of studies have been conducted on using of nanoparticles for early diagnosis and targeted drug therapy of various diseases. In fact, the small size, customized surface, upgraded solubility, or multi-functionality of nanoparticles enabled them to interact with complex cellular functions in new ways which opened many doors and created new biomedical applications. These studies demonstrated that nanotechnology vehicles can formulate biological products effectively, and this nano-formulated products with a potent ability against different diseases, were represented to have better biocompatibility, bioaccessibility and efficacy, under in vitro and in vivo conditions.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1586
Author(s):  
Salinee Jantrapirom ◽  
Luca Lo Piccolo ◽  
Dumnoensun Pruksakorn ◽  
Saranyapin Potikanond ◽  
Wutigri Nimlamool

Ubiquilins or UBQLNs, members of the ubiquitin-like and ubiquitin-associated domain (UBL-UBA) protein family, serve as adaptors to coordinate the degradation of specific substrates via both proteasome and autophagy pathways. The UBQLN substrates reveal great diversity and impact a wide range of cellular functions. For decades, researchers have been attempting to uncover a puzzle and understand the role of UBQLNs in human cancers, particularly in the modulation of oncogene’s stability and nucleotide excision repair. In this review, we summarize the UBQLNs’ genetic variants that are associated with the most common cancers and also discuss their reliability as a prognostic marker. Moreover, we provide an overview of the UBQLNs networks that are relevant to cancers in different ways, including cell cycle, apoptosis, epithelial-mesenchymal transition, DNA repairs and miRNAs. Finally, we include a future prospective on novel ubiquilin-based cancer therapies.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 553
Author(s):  
Jessica Maiuolo ◽  
Micaela Gliozzi ◽  
Vincenzo Musolino ◽  
Cristina Carresi ◽  
Saverio Nucera ◽  
...  

Oligodendrocytes are myelinating cells of the central nervous system which are generated by progenitor oligodendrocytes as a result of maturation processes. The main function of mature oligodendrocytes is to produce myelin, a lipid-rich multi-lamellar membrane that wraps tightly around neuronal axons, insulating them and facilitating nerve conduction through saltatory propagation. The myelination process requires the consumption a large amount of energy and a high metabolic turnover. Mitochondria are essential organelles which regulate many cellular functions, including energy production through oxidative phosphorylation. Any mitochondrial dysfunction impacts cellular metabolism and negatively affects the health of the organism. If the functioning of the mitochondria is unbalanced, the myelination process is impaired. When myelination has finished, oligodendrocyte will have synthesized about 40% of the total lipids present in the brain. Since lipid synthesis occurs in the cellular endoplasmic reticulum, the dysfunction of this organelle can lead to partial or deficient myelination, triggering numerous neurodegenerative diseases. In this review, the induced malfunction of oligodendrocytes by harmful exogenous stimuli has been outlined. In particular, the effects of alcohol consumption and heavy metal intake are discussed. Furthermore, the response of the oligodendrocyte to excessive mitochondrial oxidative stress and to the altered regulation of the functioning of the endoplasmic reticulum will be explored.


2018 ◽  
Vol 217 (6) ◽  
pp. 2047-2058 ◽  
Author(s):  
Chi-Lun Chang ◽  
Yu-Ju Chen ◽  
Carlo Giovanni Quintanilla ◽  
Ting-Sung Hsieh ◽  
Jen Liou

The endoplasmic reticulum (ER) Ca2+ sensor STIM1 forms oligomers and translocates to ER–plasma membrane (PM) junctions to activate store-operated Ca2+ entry (SOCE) after ER Ca2+ depletion. STIM1 also interacts with EB1 and dynamically tracks microtubule (MT) plus ends. Nevertheless, the role of STIM1–EB1 interaction in regulating SOCE remains unresolved. Using live-cell imaging combined with a synthetic construct approach, we found that EB1 binding constitutes a trapping mechanism restricting STIM1 targeting to ER–PM junctions. We further showed that STIM1 oligomers retain EB1 binding ability in ER Ca2+-depleted cells. By trapping STIM1 molecules at dynamic contacts between the ER and MT plus ends, EB1 binding delayed STIM1 translocation to ER–PM junctions during ER Ca2+ depletion and prevented excess SOCE and ER Ca2+ overload. Our study suggests that STIM1–EB1 interaction shapes the kinetics and amplitude of local SOCE in cellular regions with growing MTs and contributes to spatiotemporal regulation of Ca2+ signaling crucial for cellular functions and homeostasis.


2020 ◽  
Vol 21 (18) ◽  
pp. 6686
Author(s):  
Yu Ah Hong ◽  
Ji Eun Kim ◽  
Minjee Jo ◽  
Gang-Jee Ko

Sirtuins (SIRTs) are class III histone deacetylases (HDACs) that play important roles in aging and a wide range of cellular functions. Sirtuins are crucial to numerous biological processes, including proliferation, DNA repair, mitochondrial energy homeostasis, and antioxidant activity. Mammals have seven different sirtuins, SIRT1–7, and the diverse biological functions of each sirtuin are due to differences in subcellular localization, expression profiles, and cellular substrates. In this review, we summarize research advances into the role of sirtuins in the pathogenesis of various kidney diseases including acute kidney injury, diabetic kidney disease, renal fibrosis, and kidney aging along with the possible underlying molecular mechanisms. The available evidence indicates that sirtuins have great potential as novel therapeutic targets for the prevention and treatment of kidney diseases.


2006 ◽  
Vol 34 (3) ◽  
pp. 359-362 ◽  
Author(s):  
S. Raychaudhuri ◽  
W.A. Prinz

The proper distribution of sterols among organelles is critical for numerous cellular functions. How sterols are sorted and moved among membranes remains poorly understood, but they are transported not only in vesicles but also by non-vesicular pathways. One of these pathways moves exogenous sterols from the plasma membrane to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae. We have found that two classes of proteins play critical roles in this transport, ABC transporters (ATP-binding-cassette transporters) and oxysterol-binding protein-related proteins. Transport is also regulated by phosphoinositides and the interactions of sterols with other lipids. Here, we summarize these findings and speculate on the role of non-vesicular sterol transfer in determining intracellular sterol distribution and membrane function.


Blood ◽  
2009 ◽  
Vol 113 (7) ◽  
pp. 1513-1521 ◽  
Author(s):  
Marc S. Raab ◽  
Iris Breitkreutz ◽  
Giovanni Tonon ◽  
Jing Zhang ◽  
Patrick J. Hayden ◽  
...  

Abstract Targeting protein kinase C (PKC) isoforms by the small molecule inhibitor enzastaurin has shown promising preclinical activity in a wide range of tumor cells. We further delineated its mechanism of action in multiple myeloma (MM) cells and found a novel role of β-catenin in regulating growth and survival of tumor cells. Specifically, inhibition of PKC leads to rapid accumulation of β-catenin by preventing the phosphorylation required for its proteasomal degradation. Microarray analysis and small-interfering RNA (siRNA)–mediated gene silencing in MM cells revealed that accumulated β-catenin activates early endoplasmic reticulum stress signaling via eIF2α, C/EBP-homologous protein (CHOP), and p21, leading to immediate growth inhibition. Furthermore, accumulated β-catenin contributes to enzastaurin-induced cell death. Sequential knockdown of β-catenin, c-Jun, and p73, as well as overexpression of β-catenin or p73 confirmed that accumulated β-catenin triggers c-Jun–dependent induction of p73, thereby conferring MM cell apoptosis. Our data reveal a novel role of β-catenin in endoplasmic reticulum (ER) stress-mediated growth inhibition and a new proapoptotic mechanism triggered by β-catenin on inhibition of PKC isoforms. Moreover, we identify p73 as a potential novel therapeutic target in MM. Based on these and previous data, enzastaurin is currently under clinical investigation in a variety of hematologic malignancies, including MM.


1993 ◽  
Vol 4 (9) ◽  
pp. 931-939 ◽  
Author(s):  
D Feldheim ◽  
K Yoshimura ◽  
A Admon ◽  
R Schekman

SEC66 encodes the 31.5-kDa glycoprotein of the Sec63p complex, an integral endoplasmic reticulum membrane protein complex required for translocation of presecretory proteins in Saccharomyces cerevisiae. DNA sequence analysis of SEC66 predicts a 23-kDa protein with no obvious NH2-terminal signal sequence but with one domain of sufficient length and hydrophobicity to span a lipid bilayer. Antibodies directed against a recombinant form of Sec66p were used to confirm the membrane location of Sec66p and that Sec66p is a glycoprotein of 31.5 kDa. A null mutation in SEC66 renders yeast cells temperature sensitive for growth. sec66 cells accumulate some secretory precursors at a permissive temperature and a variety of precursors at the restrictive temperature. sec66 cells show defects in Sec63p complex formation. Because sec66 cells affect the translocation of some, but not all secretory precursor polypeptides, the role of Sec66p may be to interact with the signal peptide of presecretory proteins.


2017 ◽  
Author(s):  
Chi-Lun Chang ◽  
Yu-Ju Chen ◽  
Jen Liou

AbstractThe endoplasmic reticulum (ER) Ca2+ sensor STIM1 forms oligomers and translocates to ER-plasma membrane (PM) junctions to activate store-operated Ca2+ entry (SOCE) following ER Ca2+ depletion. STIM1 also directly interacts with end binding protein 1 (EB1) at microtubule (MT) plus-ends and resembles comet-like structures during time-lapse imaging. Nevertheless, the role of STIM1-EB1 interaction in regulating SOCE remains unresolved. Using live-cell imaging combined with pharmacological perturbation and a reconstitution approach, we revealed that EB1 binding constitutes a diffusion trap mechanism restricting STIM1 targeting to ER-PM junctions. We further showed that STIM1 oligomers retain EB1 binding ability in ER Ca2+-depleted cells. EB1 binding delayed the translocation of STIM1 oligomers to ER-PM junctions and recaptured STIM1 to prevent excess SOCE and ER Ca2+ overload. Thus, the counterbalance of EB1 binding and PM targeting of STIM1 shapes the kinetics and amplitude of local SOCE in regions with growing MTs, and contributes to precise spatiotemporal regulation of Ca2+ signaling crucial for cellular functions and homeostasis.SummarySTIM1 activates store-operated Ca2+ entry (SOCE) by translocating to endoplasmic reticulum-plasma membrane junctions. Chang et al. revealed that STIM1 localization and SOCE are regulated by a diffusion trap mechanism mediated by STIM1 binding to EB1 at growing microtubule ends.


Sign in / Sign up

Export Citation Format

Share Document