scholarly journals Astragaloside IV Synergizing with Ferulic Acid Ameliorates Pulmonary Fibrosis by TGF-β1/Smad3 Signaling

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jiahuan Tong ◽  
Zhisong Wu ◽  
Yuchen Wang ◽  
Qingxun Hao ◽  
Haoge Liu ◽  
...  

Objective. The study aims to research the interventional effect and mechanism of astragaloside IV (Ast) synergizing with ferulic acid (FA) on idiopathic pulmonary fibrosis (IPF) induced by bleomycin in mice. Methods. The mice were randomly divided into seven groups with 10 mice in each group, namely, a sham operation group, a model group, a miRNA-29b (miR-29) group, a miR-29b negative control group (NC group), a FA group, an Ast group, and a combination group. A mouse model of pulmonary fibrosis was established by intratracheal instillation of bleomycin. Samples were collected after 28 days of continuous administration. Hematoxylin and eosin (HE) and Masson staining were used to observe pathological changes in the lung tissue, and the degree of fibrosis was evaluated using the hydroxyproline content. Changes in transforming growth factor-β1 (TGF-β1) and Smad3 in the lung were observed using immunohistochemistry. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) in the serum. PCR was used to detect the expression of the miR-29b, TGF-β1, Smad3, and nuclear factor E2-related factor 2 (Nrf2) genes. Western blotting was used to detect the content of the TGF-β/Smad3 protein. Results. Ferulic acid combined with astragaloside IV reduced the degree of pulmonary fibrosis and the synthesis of hydroxyproline in lung tissue. The combination of the two also regulated the oxidative stress response , TGF-β1/Smad3 pathway and miR-29b in lung tissue. Conclusion. Astragaloside IV combined with ferulic acid regulated the oxidative stress of lung tissues and TGF-β1/Smad3 signaling through miR-29b, thereby reducing the degree of pulmonary fibrosis. This provides a reference direction for the clinical treatment of IPF patients.

2016 ◽  
Vol 36 (8) ◽  
pp. 802-812 ◽  
Author(s):  
XH Chang ◽  
A Zhu ◽  
FF Liu ◽  
LY Zou ◽  
L Su ◽  
...  

Nano nickel oxide (NiO), widely used in industry, has recently been discovered to have pulmonary toxicity. However, no subchronic exposure studies about nano NiO-induced pulmonary fibrosis have been reported. The objective of this study was to investigate pulmonary fibrosis induced by nano NiO and its potential mechanism in rats. Male Wistar rats ( n = 40, 200–240 g) were randomized into control group, nano NiO groups (0.015, 0.06, and 0.24 mg/kg), and micro NiO group (0.024 mg/kg). All rats were killed to collect lung tissue after intratracheal instillation of NiO particles twice a week for 6 weeks. To identify pulmonary fibrosis, Masson trichrome staining, hydroxyproline content, and collagen protein expression were performed. The results showed widespread lung fibrotic injury in histological examination and increased content of hydroxyproline, collagen types I and III in rat lung tissue exposed to nano NiO. To explore the potential pulmonary fibrosis mechanism, transforming growth factor beta 1 (TGF- β1) content was measured by enzyme-linked immunosorbent assay, and the messenger RNA expression of key indicators was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The TGF- β1 content was increased in nano NiO exposure groups, as well as the upregulated gene expression of TGF- β1, Smad2, Smad4, matrix metalloproteinase, and tissue inhibitor of metalloproteinase. The findings indicated that nano NiO could induce pulmonary fibrosis, which may be related to TGF- β1 activation.


2020 ◽  
Vol 34 ◽  
pp. 205873842092391 ◽  
Author(s):  
Min-na Dong ◽  
Yun Xiao ◽  
Yun-fei Li ◽  
Dong-mei Wang ◽  
Ya-ping Qu ◽  
...  

Intravenous Xuebijing (XBJ) therapy suppresses paraquat (PQ)-induced pulmonary fibrosis. However, the mechanism underlying this suppression remains unknown. This work aimed to analyze the miR-140-5p-induced effects of XBJ injection on PQ-induced pulmonary fibrosis in mice. The mice were arbitrarily assigned to four groups. The model group was administered with PQ only. The PQ treatment group was administered with PQ and XBJ. The control group was administered with saline only. The control treatment group was administered with XBJ only. The miR-140-5p and miR-140-5p knockout animal models were overexpressed. The gene expression levels of miR-140-5p, transglutaminase-2 (TG2), β-catenin, Wnt-1, connective tissue growth factor (CTGF), mothers against decapentaplegic homolog (Smad), and transforming growth factor-β1 (TGF-β1) in the lungs were assayed with quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analysis. The levels of TGF-β1, CTGF, and matrix metalloproteinase-9 (MMP-9) in the bronchoalveolar lavage fluid were assessed by enzyme-linked immunosorbent assay (ELISA). Hydroxyproline (Hyp) levels and pulmonary fibrosis were also scored. After 14 days of PQ induction of pulmonary fibrosis, AdCMV-miR-140-5p, and XBJ upregulated miR-140-5p expression; blocked the expressions of TG2, Wnt-1, and β-catenin; and decreased p-Smad2, p-Smad3, CTGF, MMP-9, and TGF-β1 expressions. In addition, Hyp and pulmonary fibrosis scores in XBJ-treated mice decreased. Histological results confirmed that PQ-induced pulmonary fibrosis in XBJ-treated lungs was attenuated. TG2 expression and the Wnt-1/β-catenin signaling pathway were suppressed by the elevated levels of miR-140-5p expression. This inhibition was pivotal in the protective effect of XBJ against PQ-induced pulmonary fibrosis. Thus, XBJ efficiently alleviated PQ-induced pulmonary fibrosis in mice.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052090542
Author(s):  
Hai Li ◽  
Baotian Kan ◽  
Lingli Song ◽  
Yufa Liu ◽  
Xiangdong Jian

Objective To elucidate the molecular mechanisms by which safflower yellow (SY) mediates therapeutic effects in rats with paraquat intoxication-induced pulmonary fibrosis. Methods Rats received combinations of paraquat, SY, and SB431542, a transforming growth factor (TGF)-β1 receptor antagonist. Survival over 28 days was assessed by Kaplan–Meier analysis. Rat tissue and serum samples were assessed by hematoxylin and eosin staining, Masson’s Trichrome staining, immunoblotting, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and transmission electron microscopy. Results Survival rates were higher in SY and SB431542 groups (treatment and paraquat) than in the exposure group (paraquat alone). In the exposure group, serum TGF-β1 levels increased between days 3 and 14; mammalian STE20-like (MST) levels increased between days 3 and 7; TGF-β1 and Smad3 levels increased between days 3 and 14; and Yap and connective tissue growth factor levels increased between days 3 and 28. TGF-β1 levels were lower in SY and SB431542 groups than in the exposure group. Pathology scores were higher in exposure, SY, and SB431542 groups than in the control group throughout the experiment. Conclusions In rats with paraquat intoxication-induced pulmonary fibrosis, Hippo signaling could be activated by the MST-Yap pathway; SY and SB431542 could alleviate pulmonary fibrosis via Hippo signaling.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hanlin Wang ◽  
Chang Li ◽  
Yingjian Jiang ◽  
Hongbo Li ◽  
Dianliang Zhang

Aim. To reveal the role of bacterial translocation (BT) and autophagy in severe acute pancreatitis-induced acute lung injury (SAP-ALI). Methods. Rats were separated into a control (sham-operation) group (n=10) and a SAP group (n=30). Sodium taurocholate (5%) was retrogradely injected into the cholangiopancreatic duct to induce SAP-ALI in rats. Then, 16S rDNA sequencing was used to detect bacterial translocation (BT). Hematoxylin eosin staining (HE) was used to detect morphological changes to the pancreas, intestine, and lung. And lung tissue wet/dry weight ratio (W/D ratio) was used to assess the extent of pulmonary edema. The expressions of LC3II and Beclin1 proteins were analyzed by western blot and immunofluorescence. Glutathione peroxidase (GPx), malondialdehyde (MDA), and superoxide dismutase (SOD) were used to assess oxidative stress in lung tissue. Results. Levels of TNF-α, IL-6, lipase, and amylase in the SAP group were significantly higher than those in the control group (P<0.01). Histopathological score and W/D ratio of the lung in the SAP-BT(+) group were significantly higher than that in the SAP-BT(-) group (P<0.01). LC3II expression was higher in the SAP-BT(-) group than that in the SAP-BT(+) group (P<0.01). The results were consistent with those of LC3II immunofluorescence assay. The expression of Beclin1 was similar to that of LC3II (P<0.01). MDA content in the SAP-BT(+) group was significantly higher than that in the SAP-BT(-) group (P<0.01), whereas SOD and GPX activities were opposite (P<0.01). Conclusions. BT can aggravate SAP-ALI with the increasing oxidative stress level, which may be related to the decrease of autophagy level.


2021 ◽  
pp. 096032712110134
Author(s):  
O Zouaoui ◽  
K Adouni ◽  
A Jelled ◽  
A Thouri ◽  
A Ben Chrifa ◽  
...  

Phytochemical composition and antioxidant activity of flowers decoction at post-flowering stage (F3D) of Opuntia dejecta were determined. The obtained findings demonstrate that F3D has a marked antioxidant activity in all tested assays. Furthermore, the present study was designed to test the protective activity of F3D against induced Diabetes type 2 (DT2) in male rats. Those metabolic syndromes were induced by a high-fructose diet (HFD) (10% fructose solution) for a period of 20 weeks. F3D was administered orally (100 and 300 mg/kg body weight) daily for the last 4 weeks. Metformin (150 mg/kg body weight) was used as a standard drug and administrated orally for the last 4 weeks. The results showed a significant increase in blood glucose, triglycerides and hepatic markers (ALAT, ASAT and ALK-P) in HFD group. A significant increase in hepatic TBARS and a significant decrease in SOD, CAT and GPX were observed in fructose fed rats compared to control group. Administration of F3D showed a protective effect in biochemical and oxidative stress parameters measured in this study. Also, oral administration of F3D restored the histological architecture of rat liver in comparison with rats fed HFD. In conclusion, F3D attenuated hepatic oxidative stress in fructose-fed rats.


Author(s):  
Akinleye Stephen Akinrinde ◽  
Halimot Olawalarami Hameed

Abstract Objectives This study examined the possible protective roles of exogenous glycine (Gly) and L-Arginine (l-Arg) against Diclofenac (DIC)-induced gastro-duodenal damage in rats. Methods Rats were divided into Group A (control), Group B (DIC group) and Groups C–F which were pre-treated for five days with Gly1 (250 mg/kg), Gly2 (500 mg/kg), l-Arg1 (200 mg/kg) and l-Arg2 (400 mg/kg), respectively, before co-treatment with DIC for another three days. Hematological, biochemical and histopathological analyses were then carried out. Results DIC produced significant (p<0.05) reduction in PCV (13.82%), Hb (46.58%), RBC (30.53%), serum total protein (32.72%), albumin (28.44%) and globulin (38.01%) along with significant (p<0.05) elevation of serum MPO activity (83.30%), when compared with control. In addition, DIC increased gastric H2O2 and MDA levels by 33.93 and 48.59%, respectively, while the duodenal levels of the same parameters increased by 19.43 and 85.56%, respectively. Moreover, SOD, GPx and GST activities in the DIC group were significantly (p<0.05) reduced in the stomach (21.12, 24.35 and 51.28%, respectively) and duodenum (30.59, 16.35 and 37.90%, respectively), compared to control. Treatment with Gly and l-Arg resulted in significant amelioration of the DIC-induced alterations although l-Arg produced better amelioration of RBC (29.78%), total protein (10.12%), albumin (9.93%) and MPO (65.01%), compared to the DIC group. The protective effects of both amino acids against oxidative stress parameters and histological lesions were largely similar. Conclusions The data from this study suggest that Gly or l-Arg prevented DIC-induced gastro-duodenal toxicity and might, therefore be useful in improving the therapeutic index of DIC.


Author(s):  
Wagner Vargas Souza Lino ◽  
André Luis Lacerda Bachi ◽  
José Arruda Mendes Neto ◽  
Gabriel Caetani ◽  
Jônatas Bussador do Amaral ◽  
...  

Abstract Introduction Combination of chronic inflammation and an altered tissue remodeling process are involved in the development of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP). Studies demonstrated that mesenchymal stem cells expressing the progenitor gene CD133 were involved in a significant reduction of the chronic inflammatory process in the polypoid tissue. Objective To evaluate the levels of CD133 (Prominin-1) in nasal polypoid tissue and its correlation with interleukin-8 (IL-8) and transforming growth factor β1 (TGF-β1). Methods A total of 74 subjects were divided in the following groups: control group (n = 35); chronic rhinosinusitis with nasal polyps nonpresenting comorbid asthma and aspirin intolerance (CRSwNPnonAI) group (n = 27); and chronic rhinosinusitis with nasal polyps presenting comorbid asthma and aspirin intolerance (CRSwNPAI) group (n = 12). Histologic analysis and also evaluation of the concentration of CD133, IL-8, and TGF-β1 by enzyme-linked immunosorbent assay (ELISA) kits were performed in nasal tissue obtained from nasal polypectomy or from middle turbinate tissue. Results Higher eosinophilic infiltration was found in both CRSwNP groups by histologic analysis. Lower levels of TGF-β1 and IL-8 were observed in both CRSwNP groups when compared with the control group, whereas the CD133 levels were significantly reduced only in the CRSwNPnonAI group compared with the control group. Conclusion It was demonstrated that the nasal mucosa presenting polyposis showed a significant reduction of CD133 levels, and also that this reduction was significantly correlated with the reduction of TGF-β1 levels, but not with IL-8 levels. Therefore, these findings may be involved in the altered inflammatory and remodeling processes observed in the nasal polyposis.


2016 ◽  
Vol 33 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Bing Xia ◽  
Kangcheng Chen ◽  
Yingnan Lv ◽  
Damin Huang ◽  
Jing Liu ◽  
...  

Objectives: Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic derivative of manganese (Mn) and is used as an antiknock agent and octane enhancer in gasoline. In this article, we tested the oxidative stress and heat stress protein (Hsp) 70 levels of gasoline station attendants to explore potential plasma biomarkers. Furthermore, the dose–response relationship was also identified. Methods: A total of 144 workers, including 96 petrol fillers and 48 cashiers, participated in the study. Ambient concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX) and Mn were monitored at nine filling stations. During the measuring process, the individual cumulative exposure index was calculated. Plasma oxidative stress and Hsp70 levels were also analysed using enzyme-linked immunosorbent assay. Results: The BTEX time-weighted average in office areas was significantly lower than in refuelling areas ( p < 0.05). In refuelling areas, the content of Mn ranged from 6.44 μg/m3 to 127.34 μg/m3, which was much higher than that in office areas (3.16–7.22 μg/m3; p < 0.05). Exposed workers had significantly different plasma oxidative stress indicators compared with the control group, respectively: superoxide dismutase (SOD), 39.18 ± 6.05 U/mL versus 52.84 ± 3.87 U/mL; glutathione peroxidase (GSH-Px), 186.07 ± 15.63 U versus 194.38 ± 10.42 U; and malondialdehyde (MDA), 1.68 ± 0.52 nmol/L versus 1.43 ± 0.64 nmol/L (in all comparisons, p < 0.05). Plasma Hsp70 level in the exposed group (2.77 ± 0.64 ng/mL) was significantly higher than in the control group (2.32 ± 0.87 ng/mL; p < 0.05). Furthermore, Hsp70 levels were inversely correlated with the activities of SOD ( r = −0.305) and GSH-Px ( r = −0.302) in the exposed group ( p < 0.05). Moreover, a positive correlation ( r = 0.653) was found between plasma Hsp70 levels and plasma MDA levels ( p < 0.05). Conclusion: Exposure to MMT-containing gasoline may result in increasing reactive oxygen stress among filling station attendants. Plasma Hsp70 levels could be used as a sensitive responsive biomarker for exposed workers.


CNS Spectrums ◽  
2017 ◽  
Vol 24 (03) ◽  
pp. 333-337 ◽  
Author(s):  
Maiara Zeni-Graiff ◽  
Adiel C. Rios ◽  
Pawan K. Maurya ◽  
Lucas B. Rizzo ◽  
Sumit Sethi ◽  
...  

IntroductionOxidative stress has been documented in chronic schizophrenia and in the first episode of psychosis, but there are very little data on oxidative stress prior to the disease onset.ObjectiveThis work aimed to compare serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in young individuals at ultra-high risk (UHR) of developing psychosis with a comparison healthy control group (HC).MethodsThirteen UHR subjects and 29 age- and sex-matched healthy controls (HC) were enrolled in this study. Clinical assessment included the Comprehensive Assessment of At-Risk Mental States (CAARMS), the Semi-Structured Clinical Interview for DSM-IV Axis-I (SCID-I) or the Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), and the Global Assessment of Functioning (GAF) scale. Activities of SOD and GPx were measured in serum by the spectrophotometric method using enzyme-linked immunosorbent assay kits.ResultsAfter adjusting for age and years of education, there was a significant lower activity of SOD and lower GPX activity in the UHR group compared to the healthy control group (rate ratio [RR]=0.330, 95% CI 0.187; 0.584, p&lt;0.001 and RR=0.509, 95% CI 0.323; 0.803, p=0.004, respectively). There were also positive correlations between GAF functioning scores and GPx and SOD activities.ConclusionOur results suggest that oxidative imbalances could be present prior to the onset of full-blown psychosis, including in at-risk stages. Future studies should replicate and expand these results.


2018 ◽  
Vol 44 (4) ◽  
pp. 530-538
Author(s):  
Aysun Çetin ◽  
İhsan Çetin ◽  
Semih Yılmaz ◽  
Ahmet Şen ◽  
Göktuğ Savaş ◽  
...  

Abstract Background Limited research is available concerning the relationship between oxidative stress and inflammation parameters, and simultaneously the effects of rosuvastatin on these markers in patients with hypercholesterolemia. We aimed to investigate the connection between cytokines and oxidative stress markers in patients with hypercholesterolemia before and after rosuvastatin treatment. Methods The study consisted of 30 hypercholesterolemic patients diagnosed with routine laboratory tests and 30 healthy participants. The lipid parameters, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), paraoxonase-1 (PON1) and malondialdehyde (MDA) levels in controls and patients with hypercholesterolemia before and after 12-week treatment with rosuvastatin (10 mg/kg/day), were analyzed by means of enzyme-linked immunosorbent assay. Results It was found that a 12-week cure with rosuvastatin resulted in substantial reductions in IL-1β, IL-6 and TNF-α and MDA levels as in rising activities of PON1 in patients with hypercholesterolemia. Before treatment, the PON1 levels were significantly negatively correlated with TNF-α and IL-6 in control group, while it was positively correlated with TNF-α in patients. Conclusion Our outcomes provide evidence of protected effect of rosuvastatin for inflammation and oxidative damage. It will be of great interest to determine whether the correlation between PON1 and cytokines has any phenotypic effect on PON1.


Sign in / Sign up

Export Citation Format

Share Document