scholarly journals Study on Protection of Human Umbilical Vein Endothelial Cells from Amiodarone-Induced Damage by Intermedin through Activation of Wnt/β-Catenin Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yanhong Wang ◽  
Juanjuan Wang ◽  
Jia Yang ◽  
Jing Kang ◽  
Fuping Xue ◽  
...  

Amiodarone (AM) is one of the most effective antiarrhythmic drugs and normally administrated by intravenous infusion which is liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. Intermedin (IMD), a member of calcitonin family, has a broad spectrum of biological effects including anti-inflammatory effects, antioxidant activities, and antiapoptosis. But now, the protective effects of IMD against amiodarone-induced phlebitis and the underlying molecular mechanism are not well understood. In this study, the aim was to investigate the protective efficiency and potential mechanisms of IMD in amiodarone-induced phlebitis. The results of this study revealed that treatment with IMD obviously attenuated apoptosis and exfoliation of vascular endothelial cells and infiltration of inflammatory cells in the rabbit model of phlebitis induced by intravenous infusion of amiodarone compared with control. Further tests in vitro demonstrated that IMD lessened amiodarone-induced endothelial cell apoptosis, improved amiodarone-induced oxidative stress injury, reduced inflammatory reaction, and activated the Wnt/β-catenin signal pathway which was inhibited by amiodarone. And these effects could be reversed by Wnt/β-catenin inhibitor IWR-1-endo, and si-RNA knocked down the gene of Wnt pathway. These results suggested that IMD exerted the protective effects against amiodarone-induced endothelial injury via activating the Wnt/β-catenin pathway. Thus, IMD could be used as a potential agent for the treatment of phlebitis.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hai-Xia Shi ◽  
Jiajun Yang ◽  
Tao Yang ◽  
Yong-Liang Xue ◽  
Jun Liu ◽  
...  

α-Asarone is the major therapeutical constituent ofAcorus tatarinowiiSchott. In this study, the potential protective effects ofα-asarone against endothelial cell injury induced by angiotensin II were investigatedin vitro. The EA.hy926 cell line derived from human umbilical vein endothelial cells was pretreated withα-asarone (10, 50, 100 µmol/L) for 1 h, followed by coincubation with Ang II (0.1 µmol/L) for 24 h. Intracellular nitric oxide (NO) and reactive oxygen species (ROS) were detected by fluorescent dyes, and phosphorylation of endothelial nitric oxide synthase (eNOS) atSer1177was determined by Western blotting.α-Asarone dose-dependently mitigated the Ang II-induced intracellular NO reduction (P<0.01versus model) and ROS production (P<0.01versus model). Furthermore, eNOS phosphorylation (Ser1177) by acetylcholine was significantly inhibited by Ang II, while pretreatment for 1 h withα-asarone partially prevented this effect (P<0.05versus model). Additionally, cell viability determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (105~114.5% versus control,P>0.05) was not affected after 24 h of incubation withα-asarone at 1–100 µmol/L. Therefore,α-asarone protects against Ang II-mediated damage of endothelial cells and may be developed to prevent injury to cardiovascular tissues.


2016 ◽  
Vol 231 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Mahendra Prasad Bhatt ◽  
Yeon-Ju Lee ◽  
Se-Hui Jung ◽  
Yong Ho Kim ◽  
Jong Yun Hwang ◽  
...  

C-peptide exerts protective effects against diabetic complications; however, its role in inhibiting hyperglycemic memory (HGM) has not been elucidated. We investigated the beneficial effect of C-peptide on HGM-induced vascular damage in vitro and in vivo using human umbilical vein endothelial cells and diabetic mice. HGM induced apoptosis by persistent generation of intracellular ROS and sustained formation of ONOO− and nitrotyrosine. These HGM-induced intracellular events were normalized by treatment with C-peptide, but not insulin, in endothelial cells. C-peptide also inhibited persistent upregulation of p53 and activation of mitochondrial adaptor p66shc after glucose normalization. Further, C-peptide replacement therapy prevented persistent generation of ROS and ONOO− in the aorta of diabetic mice whose glucose levels were normalized by the administration of insulin. C-peptide, but not insulin, also prevented HGM-induced endothelial apoptosis in the murine diabetic aorta. This study highlights a promising role for C-peptide in preventing HGM-induced intracellular events and diabetic vascular damage.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Juan J Mata ◽  
Laura Moreno ◽  
Paula Arana ◽  
Silvia Chocarro ◽  
Amaia Gascue ◽  
...  

2021 ◽  
Author(s):  
Mengqi Zhang ◽  
Wenning Yang ◽  
Xinchen Wu ◽  
Tengfei Zhang

Abstract Despite the increasing knowledge of biological isotope effect, comprehensive understanding of heavy isotope effect in the biological contexts has remained far less than expectation. The present study investigated the carbon isotope effect of 13C enriched testosterone on human cells. It was among the rare studies on carbon isotope effect of bioactive compound. Human osteoblasts, human aortic endothelial cells, and human umbilical vein endothelial cells were cultured in vitro and treated with testosterone and 13C enriched testosterone (13C/12C:6.7%). The impacts of physiological to pharmacological concentrations (10-10-10-5mol/L) of the bioactive compound were taken into account. The cell proliferation activities were measured using MTS assay. The levels of alkaline phosphatase and osteocalcin in osteoblasts were tested. Our results established that 13C enriched testosterone exhibited different biological effects from testosterone. At the concentrations of 10-10mol/L and 10-5mol/L, there were significant differences in prompting cell proliferation between testosterone and 13C enriched testosterone. At physiological concentrations, testosterone prompted proliferations of the three kinds of cells; whereas, 13C enriched testosterone did not prompt the cell proliferation, and its effects were not concentration dependent. At supraphysiological concentration (10-5mol/L), testosterone had the trend of inhibiting cell growth; whereas, 13C enriched testosterone had the trend of prompting cell growth. 13C enriched testosterone significantly enhanced osteocalcin secretion in human osteoblasts at supraphysiological concentration. These findings challenged the common view of growth retardation effect of heavy isotope, which imply that biological isotope effects are worthy of further study. The potential applications of 13C enriched compound were discussed.


2010 ◽  
Vol 429 (3) ◽  
pp. 565-572 ◽  
Author(s):  
Ian M. Evans ◽  
Azadeh Bagherzadeh ◽  
Mark Charles ◽  
Tony Raynham ◽  
Chris Ireson ◽  
...  

VEGF (vascular endothelial growth factor) plays an essential role in angiogenesis during development and in disease largely mediated by signalling events initiated by binding of VEGF to its receptor, VEGFR2 (VEGF receptor 2)/KDR (kinase insert domain receptor). Recent studies indicate that VEGF activates PKD (protein kinase D) in endothelial cells to regulate a variety of cellular functions, including signalling events, proliferation, migration and angiogenesis. To better understand the role of PKD in VEGF-mediated endothelial function, we characterized the effects of a novel pyrazine benzamide PKD inhibitor CRT5 in HUVECs (human umbilical vein endothelial cells). The activity of the isoforms PKD1 and PKD2 were blocked by this inhibitor as indicated by reduced phosphorylation, at Ser916 and Ser876 respectively, after VEGF stimulation. The VEGF-induced phosphorylation of three PKD substrates, histone deacetylase 5, CREB (cAMP-response-element-binding protein) and HSP27 (heat-shock protein 27) at Ser82, was also inhibited by CRT5. In contrast, CRT6, an inactive analogue of CRT5, had no effect on PKD or HSP27 Ser82 phosphorylation. Furthermore, phosphorylation of HSP27 at Ser78, which occurs solely via the p38 MAPK (mitogen-activated protein kinase) pathway, was also unaffected by CRT5. In vitro kinase assays show that CRT5 did not significantly inhibit several PKC isoforms expressed in endothelial cells. CRT5 also decreased VEGF-induced endothelial migration, proliferation and tubulogenesis, similar to effects seen when the cells were transfected with PKD siRNA (small interfering RNA). CRT5, a novel specific PKD inhibitor, will greatly facilitate the study of the role of PKD signalling mechanisms in angiogenesis.


2018 ◽  
Vol 19 (8) ◽  
pp. 2286 ◽  
Author(s):  
Pi-Kai Chang ◽  
I-Chuan Yen ◽  
Wei-Cheng Tsai ◽  
Tsu-Chung Chang ◽  
Shih-Yu Lee

Rhodiola crenulata root extract (RCE) has been shown to possess protective activities against hypoxia both in vitro and in vivo. However, the effects of RCE on response to hypoxia in the endothelium remain unclear. In this study, we aimed to examine the effects of RCE in endothelial cells challenged with hypoxic exposure and to elucidate the underlying mechanisms. Human umbilical vein endothelial cells were pretreated with or without RCE and then exposed to hypoxia (1% O2) for 24 h. Cell viability, nitric oxide (NO) production, oxidative stress markers, as well as mechanistic readouts were studied. We found that hypoxia-induced cell death, impaired NO production, and oxidative stress. These responses were significantly attenuated by RCE treatment and were associated with the activation of AMP-activated kinase and extracellular signal-regulated kinase 1/2 signaling pathways. In summary, we showed that RCE protected endothelial cells from hypoxic insult and suggested that R. crenulata might be useful for the prevention of hypoxia-associated vascular dysfunction.


Author(s):  
Xifeng Wang ◽  
Xiaomin Xu ◽  
Yu peng Yang ◽  
Xin Xin ◽  
Zekang Li ◽  
...  

IntroductionThe high mortality of sepsis is closely related to disorder of coagulation induced by endothelial inflammatory response. Our aim is to investigate the protective effects of Dihydromyricetin (DHM) on endothelial cells in sepsis and the endoplasmic reticulum (ER) stress mechanism.Material and methodsIn vivo, we conducted an animal study for which fifty male Wistar rats were randomly and equally divided into five groups: sham group, cecal ligation and puncture (CLP) group and three CLP+ DHM (50, 100, 150 mg/kg) groups, the DHM was orally administered 2 h after CLP for 3 days (once per day). In vitro, human umbilical vein endothelial cells (HUVECs) were treated with DHM (50μmol) for 24 h after stimulation by lipopolysaccharide (LPS). In the inhibition groups, reactive oxygen species (ROS) inhibitor N-acetylcysteine (NAC, 3 mmol) and endoplasmic reticulum (ER) stress inhibitor (STF-083010, 10 μmol) were incubated prior to LPS.ResultsOur results indicated that DHM (150 mg/kg) alleviated the histopathological injury of endothelium, decreased the release of inflammatory cytokines and adhesion molecules such as interleukin-1β (IL-1β), interleukin-6 (IL-6) , tumor necrosis factor alpha (TNF-α), vascular cell adhesion molecule 1 (VCAM-1) and endothelin-1 (ET-1), and inhibited the production of ROS production. In addition, we found that DHM ameliorated ER damage, significantly decreased the protein expressions of IRE1α/NF-κB signaling pathway.ConclusionsDHM treatment alleviated inflammatory response of endothelial cells in sepsis through the IRE1α/NF-κB signaling pathway triggered by oxidative stress. This study provided experimental rationale for the treatment of DHM on therapy of sepsis.


1999 ◽  
Vol 27 (03n04) ◽  
pp. 331-338 ◽  
Author(s):  
Chun-Su Yuan ◽  
Anoja S. Attele ◽  
Ji An Wu ◽  
Tasha K. Lowell ◽  
Zhenlun Gu ◽  
...  

Endothelial cell damage is considered to be the initial step in the genesis of thrombosis and arteriosclerosis, the common precursors of cardiovascular disorders. In this study, we evaluated the protective effects of American ginseng or Panax quinquefolium L. extracts on endothelial cell injury, and investigated effects of ginseng extracts on thrombin-induced endothelin release using cultured human umbilical vein endothelial cells. We observed that when endothelial cells pretreated with 1, 10, and 100 μg/ml of Panax quinquefolium L. extracts were incubated for 4 and 24 hr with thrombin, the concentration of endothelin was significantly decreased in a concentration dependent, time related manner (at 4 hr, IC50 = 5.1 μg/ml; at 24 hr, IC50 = 6.2 μg/ml). We further evaluated the effects of NG-nitro-L-arginine (NLA), a nitric oxide (NO) synthetase inhibitor, on the activity of Panax quinquefolium L. extracts. Following pretreatment of cultured endothelial cells with NLA, the inhibition of thrombin-induced endothelin release by Panax quinquefolium L. was significantly reduced (P < 0.05). This result suggests that the pharmacological action of Panax quinquefolium L. is, at least partially, due to NO release. Our data demonstrate that American ginseng may play a therapeutic role in facilitating the hemodynamic balance of vascular endothelial cells.


1997 ◽  
Vol 78 (02) ◽  
pp. 934-938 ◽  
Author(s):  
Hsiun-ing Chen ◽  
Yueh-I Wu ◽  
Yu-Lun Hsieh ◽  
Guey-Yueh Shi ◽  
Meei-Jyh Jiang ◽  
...  

SummaryTo investigate whether the endothelium-platelet interactions may be altered by plasminogen activation, cultured human umbilical vein endothelial cells (ECs) were treated with tissue-type plasminogen activator (t-PA) in the presence of plasminogen, and platelet adhesion to ECs was subsequently measured by using a tapered flow chamber. Our results demonstrated that platelets adhered more readily to t-PA treated EC monolayer than to the control monolayer at all shear stress levels tested. This phenomenon was treatment time-dependent and dose-dependent, and it could be blocked by adding plasmin inhibitors, such as e-amino caproic acid and aprotinin. Adherent platelets on t-PA treated EC monolayer underwent more severe shape change than those on the control monolayer. While the extracellular matrix directly treated with t-PA attracted less platelets than the control matrix did, platelet adhesion to the matrix that was produced by t-PA-treated ECs was unaltered. These data suggest that t-PA treatment on ECs compromised antiplatelet-adhesion capability on their apical surface without altering the reactivity of their extracellular matrix towards platelets.


Sign in / Sign up

Export Citation Format

Share Document