scholarly journals Numerical Simulation of Coupled Thermal-Hydrological-Mechanical-Chemical Processes in the Spontaneous Combustion of Underground Coal Seams

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuntao Liang ◽  
Rui Zhou

In this study, we develop a fully coupled thermal-hydrological-mechanical-chemical (THMC) model to analyze the spontaneous combustion process of underground coal seams, focusing on investigating the influences of the pressure difference between oxygen and coal, the rate of coal-oxygen reaction heat, and the activation energy. The simulation results show that as oxygen propagates into the coal seams, the coal-oxygen reaction causes the spontaneous combustion of coal to heat. The consumption of oxygen leads to an increase in oxygen consumption along the way and a decrease in gas pressure. The permeability near the right boundary increases while significantly reducing the area far away from the right boundary as the predominant effect of spontaneous combustion. Additionally, a sensitivity study shows that a more considerable pressure difference and coal-oxygen reaction heat contribute to promoting the coal temperature, while the activation energy has a slight effect. Moreover, an increase in coal-oxygen reaction heat and activation energy accelerates the oxygen consumption rate and thus causes a lower oxygen concentration. Overall, the results provide a basis for the prediction and prevention of coal seam spontaneous combustion.

2021 ◽  
Vol 39 (4) ◽  
pp. 1287-1293
Author(s):  
Yongfei Jin ◽  
Li Yan ◽  
Yin Liu ◽  
Chuansheng Li

In order to study the dynamic development law of different regions in the spontaneous combustion process of coal, the spontaneous combustion process of loose coal under constant air volume from normal temperature to 140 °C was tested by using large coal spontaneous combustion simulation test bench, so as to analyze the change law of oxygen consumption rate and heat release intensity in time and space. The results showed that the temperature of the loose coal spontaneous combustion process varies with the height of the coal body at different temperature stages. The high temperature point moved from the upper middle position of the coal body to the air inlet side; the oxygen consumption rate and time of different coal body heights showed indexes Increase, and the rate of oxygen consumption coincided with the migration law of the high temperature point of the coal body height. The coal body exhibited slow and rapid growth in stages around 75 °C; the heat release intensity of the loose coal inlet gradually increased. After the temperature exceeds 75 °C, the heat release intensity of different coal heights gradually increased with time, and the intensity of heat release coincides with the migration law of the high temperature point of the coal body height.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alberto Palma ◽  
Javier Mauricio Loaiza ◽  
Manuel J. Díaz ◽  
Juan Carlos García ◽  
Inmaculada Giráldez ◽  
...  

Abstract Background Burning fast-growing trees for energy production can be an effective alternative to coal combustion. Thus, lignocellulosic material, which can be used to obtain chemicals with a high added value, is highly abundant, easily renewed and usually inexpensive. In this work, hemicellulose extraction by acid hydrolysis of plant biomass from three different crops (Chamaecytisus proliferus, Leucaena diversifolia and Paulownia trihybrid) was modelled and the resulting solid residues were used for energy production. Results The influence of the nature of the lignocellulosic raw material and the operating conditions used to extract the hemicellulose fraction on the heat capacity and activation energy of the subsequent combustion process was examined. The heat power and the activation energy of the combustion process were found to depend markedly on the hemicellulose content of the raw material. Thus, a low content in hemicelluloses resulted in a lower increased energy yield after acid hydrolysis stage. The process was also influenced by the operating conditions of the acid hydrolysis treatment, which increased the gross calorific value (GCV) of the solid residue by 0.6–9.7% relative to the starting material. In addition, the activation energy of combustion of the acid hydrolysis residues from Chamaecytisus proliferus (Tagasaste) and Paulownia trihybrid (Paulownia) was considerably lower than that for the starting materials, the difference increasing with increasing degree of conversion as well as with increasing temperature and acid concentration in the acid hydrolysis. The activation energy of combustion of the solid residues from acid hydrolysis of tagasaste and paulownia decreased markedly with increasing degree of conversion, and also with increasing temperature and acid concentration in the acid hydrolysis treatment. No similar trend was observed in Leucaena diversifolia (Leucaena) owing to its low content in hemicelluloses. Conclusions Acid hydrolysis of tagasaste, leucaena and paulownia provided a valorizable liquor containing a large amount of hemicelluloses and a solid residue with an increased heat power amenable to efficient valorization by combustion. There are many potential applications of the hemicelluloses-rich and lignin-rich fraction, for example as multi-components of bio-based feedstocks for 3D printing, for energy and other value-added chemicals.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3796
Author(s):  
Mudassar Azam ◽  
Asma Ashraf ◽  
Saman Setoodeh Setoodeh Jahromy ◽  
Sajjad Miran ◽  
Nadeem Raza ◽  
...  

In connection to present energy demand and waste management crisis in Pakistan, refuse-derived fuel (RDF) is gaining importance as a potential co-fuel for existing coal fired power plants. This research focuses on the co-combustion of low-quality local coal with RDF as a mean to reduce environmental issues in terms of waste management strategy. The combustion characteristics and kinetics of coal, RDF, and their blends were experimentally investigated in a micro-thermal gravimetric analyzer at four heating rates of 10, 20, 30, and 40 °C/min to ramp the temperature from 25 to 1000 °C. The mass percentages of RDF in the coal blends were 10%, 20%, 30%, and 40%, respectively. The results show that as the RDF in blends increases, the reactivity of the blends increases, resulting in lower ignition temperatures and a shift in peak and burnout temperatures to a lower temperature zone. This indicates that there was certain interaction during the combustion process of coal and RDF. The activation energies of the samples were calculated using kinetic analysis based on Kissinger–Akahira–Sunnose (KAS) and Flynn–Wall–Ozawa (FWO), isoconversional methods. Both of the methods have produced closer results with average activation energy between 95–121 kJ/mol. With a 30% refuse-derived fuel proportion, the average activation energy of blends hit a minimum value of 95 kJ/mol by KAS method and 103 kJ/mol by FWO method.


2021 ◽  
pp. 009524432110203
Author(s):  
Sudhir Bafna

It is often necessary to assess the effect of aging at room temperature over years/decades for hardware containing elastomeric components such as oring seals or shock isolators. In order to determine this effect, accelerated oven aging at elevated temperatures is pursued. When doing so, it is vital that the degradation mechanism still be representative of that prevalent at room temperature. This places an upper limit on the elevated oven temperature, which in turn, increases the dwell time in the oven. As a result, the oven dwell time can run into months, if not years, something that is not realistically feasible due to resource/schedule constraints in industry. Measuring activation energy (Ea) of elastomer aging by test methods such as tensile strength or elongation, compression set, modulus, oxygen consumption, etc. is expensive and time consuming. Use of kinetics of weight loss by ThermoGravimetric Analysis (TGA) using the Ozawa/Flynn/Wall method per ASTM E1641 is an attractive option (especially due to the availability of commercial instrumentation with software to make the required measurements and calculations) and is widely used. There is no fundamental scientific reason why the kinetics of weight loss at elevated temperatures should correlate to the kinetics of loss of mechanical properties over years/decades at room temperature. Ea obtained by high temperature weight loss is almost always significantly higher than that obtained by measurements of mechanical properties or oxygen consumption over extended periods at much lower temperatures. In this paper, data on five different elastomer types (butyl, nitrile, EPDM, polychloroprene and fluorocarbon) are presented to prove that point. Thus, use of Ea determined by weight loss by TGA tends to give unrealistically high values, which in turn, will lead to incorrectly high predictions of storage life at room temperature.


1975 ◽  
Vol 38 (4) ◽  
pp. 623-629 ◽  
Author(s):  
D. B. Gail ◽  
G. D. Massaro ◽  
D. Massaro

We examined the time course of the influence of cycloheximide on descending pressure-volume curves of excised lungs and on protein and lecithin synthesis and oxygen consumption by lung slices. We also looked at the influence of cycloheximide on granular pneumocyte ultrastructure. Excised lungs from cycloheximide-treated animals are more compliant than controls. After ventilation with air, lungs from control and cycloheximide animals show increased retractive forces and a shift to the right of the deflation P-V curve. Incubation at 38 degrees C for 30 min reverses these changes in control lungs, but not in lungs from cycloheximide-treated rabbits. There is no change in liquid delfation P-V curves after cycloheximide. Cycloheximide causes an immediate decrease of 50% in incorporation of radioactive leucine into protein by lung slices. Incorporation of radioactive palmitate into lecithin and oxygen consumption are also decreased by 50% 6 h after cycloheximide. Lamellar bodies in granular pneumocytes are smaller after cycloheximide. Cycloheximide causes a significant increase in the surface density of the lamellar body envelope. Cytoplasmic area of granular pneumocytes is increased after cycloheximide.


2014 ◽  
Vol 525 ◽  
pp. 227-231 ◽  
Author(s):  
Min Xiao ◽  
Chun Long Feng

In order to solve the problem of Diesel natural gas dual fuel engine, such as power reduction, low charging efficiency, the conception of diesel engine fueled with pilot-ignited directly-injected liquefied natural gas is put forward. On the basis of this theory, a medium speed diesel of the marine is refitted into dual fuel engine, in order to keep original power, decrease the temperature of combustion and reduce emission. The LNG injection timing, duration of LNG injection and the different ratios the pilot diesel to total energy are studied the method of AVL FIRE software. Conclusions are as follows: When the different ratios pilot diesel to total energy is 0.5%, the engine can not work; Delaying the LNG injection timing, shortening the LNG injection duration and choose the right ratios pilot diesel to total energy can reach the indicated power of original machine, and the NOx emissions level will be greatly reduced.


2019 ◽  
Vol 97 (11) ◽  
pp. 795-804 ◽  
Author(s):  
Dong Xiang ◽  
Weihua Zhu

The density functional tight-binding molecular dynamics approach was used to study the mechanisms and kinetics of initial pyrolysis and combustion reactions of isolated and multi-molecular FOX-7. Based on the thermal cleavage of bridge bonds, the pyrolysis process of FOX-7 can be divided into three stages. However, the combustion process can be divided into five decomposition stages, which is much more complex than the pyrolysis reactions. The vibrations in the mean temperature contain nodes signifying the formation of new products and thereby the transitions between the various stages in the pyrolysis and combustion processes. Activation energy and pre-exponential factor for the pyrolysis and combustion reactions of FOX-7 were obtained from the kinetic analysis. It is found that the activation energy of its pyrolysis and combustion reactions are very low, making both take place fast. Our simulations provide the first atomic-level look at the full dynamics of the complicated pyrolysis and combustion process of FOX-7.


2014 ◽  
Vol 977 ◽  
pp. 124-128 ◽  
Author(s):  
Jun Deng ◽  
Kai Wang ◽  
Xiao Wei Zhai

Proximate and ultimate analysis, X-ray diffraction, infrared spectroscopy and thermal analysis experiments were carried out to study the spontaneous combustion oxidation based characteristic of six Jurassic coal samples from North Shaanxi in West China and three Permo-carboniferous coal samples from East China. The results showed that the characteristic of north Shaanxi Jurassic coal was low ash, low sulfur, high volatile, high oxygen content and amorphous structure. More type and quantity of reactive functional groups existed in the original Jurassic coal, such as carboxyl, methyl, methylene and ether oxygen. And the characteristic temperatures of north Shaanxi Jurassic coal sample in the oxidation and spontaneous combustion process was lower than other coal samples, due to the participation in the reaction with oxygen of the more active functional groups.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Naifu Cao ◽  
Gang Wang ◽  
Yuntao Liang

In this article, a series of experiments have been carried out to study the spontaneous combustion and oxidation mechanism of coal after water immersion and investigate its tendency to spontaneous combustion, analyze the difficulty of spontaneous combustion of coal samples under different water immersion conditions, and establish a kinetic model of water immersion coal oxidation (taking the Bulianta 12# coal as a case study). They rely on physical oxidation adsorption, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry, and oil bath heating. SEM has been used to analyze the characteristics of coal pore structure under different water immersion conditions (water-saturated coal samples under different water loss conditions until the coal samples are completely dried); FTIR served to investigate the characteristics of the molecular chemical structure of the coal surface before and after the coal is immersed in water. Through programmed temperature oxidation experiments combined with FTIR analyses and gas chromatographic (GC) analysis of gaseous products, it has been possible to study the changes of molecular structure and gas products on the surface of coal samples at different temperatures and water immersion conditions. The oxidation reaction rate of the 12# coal samples of Shendong Mine’s Bulianta Mine under different water content conditions during the spontaneous combustion process has been quantitatively studied. The difficulty of spontaneous combustion of coal samples has been correspondingly addressed. A kinetic model from the perspective of oxygen consumption has been proposed. Thermogravimetry-differential scanning calorimetry (TG-DSC) has been used to analyze and study the exothermal oxidation process before and after coal immersion. From the perspective of the exothermic intensity of the coal-oxygen reaction, an oxidation kinetic model for immersed coal samples has been developed to qualitatively determine its spontaneous combustion tendency. Results have shown that the increase in the specific surface area increases the risk of spontaneous combustion, and coal samples after soaking and drying have a stronger tendency to spontaneous combustion than raw coal. The moisture content of the coal sample leading to the easiest ignition conditions is 16.05%. Regardless of the moisture content, the critical temperature is maintained at 65–75°C, and the temperature of the left coal in the goaf should be prevented from exceeding this critical value.


Sign in / Sign up

Export Citation Format

Share Document