scholarly journals circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yu Li ◽  
Guangle Qin ◽  
Jinyun Du ◽  
Peng Yue ◽  
Yanling Zhang ◽  
...  

Circular RNA LDLRAD3 behaved as an oncogene in several malignancies, but its effects in NSCLC and the involvement of downstream molecules and activation of signaling pathways had not been fully reported. We planned to explore how LDLRAD3 facilitated the malignancy of NSCLC. QRT-PCR was performed to evaluate the expression levels of LDLRAD3, miR-20a-5p, and SLC7A5 in NSCLC tissues and cells. si-LDLRAD3 was transfected to A549 and H1299 cells to knock down intrinsic LDLRAD3 to determine its oncogenic roles. CCK-8 assay and transwell assay were executed to assess cell proliferative, migrative, and invasive abilities. Dual-luciferase reporter (DLR) assay was manipulated to verify the ENCORI-predicted relationships between LDLRAD3 and miR-20a-5p and between miR-20a-5p and SLC7A5. Western blot, immunofluorescent assay, and immunohistochemistry were applied to explore the expression levels of SLC7A5, and the levels of mTORC1 pathway-related proteins were evaluated using western blot. Rescue experiments were conducted by transfecting si-LDLRAD3, miR-20a-5p inhibitor, and si-SLC7A5 to explore the influence of the LDLRAD3-miR-20a-5p-SLC7A5 axis on the malignant behaviors of NSCLC cells. The expression levels of LDLRAD3 and SLC7A5 were boosted, whereas miR-20a-5p was impeded in NSCLC tissues and cell lines. Knockdown of LDLRAD3 weakened the proliferation, migration, and invasion of A549 and H1299 cells. LDLRAD3 was verified to sponge miR-20a-5p and miR-20a-5p targeted SLC7A5. LDLRAD3 activated the mTORC1 singling pathway via the miR-20a-5p-SLC7A5 axis to strengthen the malignant properties of A549 and H1299 cells. We concluded that LDLRAD3 exerted oncogenic effects via the miR-20a-5p-SLC7A5 axis to activate the mTORC1 signaling pathway in NSCLC. Our findings enlightened that LDLRAD3 could become a potential therapeutic target in the treatment and management of NSCLC.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaolong Tang ◽  
Yahang Liang ◽  
Guorui Sun ◽  
Qingsi He ◽  
Hui Qu ◽  
...  

AbstractUbiquilin 4 (UBQLN4) is an important member of the ubiquitin-like protein family. An increasing number of studies have shown that UBQLN4 is an important regulator of tumorigenesis. Nevertheless, the biological function and detailed mechanisms of UBQLN4 in colorectal cancer (CRC) development and progression remain unclear. Here, we identified UBQLN4 upregulation in CRC tissues and it is positively associated with CRC size, TNM stage, and lymphatic metastasis. Patients with high UBQLN4 expression had a poor prognosis. Functionally, overexpression of UBQLN4 significantly promoted CRC cell proliferation, migration, and invasion, while UBQLN4 silencing elicited the opposite effect. This result was consistent with the conclusion that UBQLN4 expression correlated positively with the CRC size and lymphatic metastasis. In vivo, UBQLN4 silencing also inhibited tumor growth. Mechanistically, using gene set enrichment analysis (GSEA) and western blot experiments, we identified that UBQLN4 activated the Wnt/β-catenin signaling pathway to upregulate β-catenin and c-Myc expression, thereby promoting CRC proliferation, migration and invasion. A rescue experiment further verified this conclusion. Dual luciferase reporter, real-time quantitative PCR (RT-qPCR), western blot and chromatin immunoprecipitation (ChIP) assays indicated that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) directly bound to the UBQLN4 core promoter region and activated its transcription, upregulating β-catenin and c-Myc expression to promote CRC progression. Thus, our findings suggest that UBQLN4 is a key oncogene in CRC and may be a promising target for the diagnosis and treatment of patients with CRC.


2021 ◽  
Vol 11 (7) ◽  
pp. 1293-1304
Author(s):  
FenLan Xu ◽  
Liying Xu ◽  
Xiaoyan Xu ◽  
Zhenhua Huang ◽  
Liang Su

The role of anesthetics in the treatment of cancer has been reported, but the role of Dexmedetomidine (Dex) in the treatment of cervical cancer (CC) has not been reported.In this study, cell viability and proliferation were determined by MTT and cloning formation assay. The expression of proliferation-related proteins ki67 and PCNA was detected by western blot. Wound healing and transwell detected cell migration and invasion, and western blot detected the expression of migration and invasion related proteins MMP4 and MMP9, and epithelial-mesenchymal transformation (ETM)-related proteins N-cadherin, Snail, Vimentin and E-cadherin. Western blot also detected the expression of pathway related proteins p-JAK2, p-STAT1, p-STAT3, JAK2, STAT1 and STAT3. It showed that Dex inhibited the cell viability and proliferation of Hela and siHa and the expression of ki67 and PCNA were also inhibited. Dex inhibited the cell migration and invasion, and inhibited the expression of MMP4 and MMP9. In addition, Dex inhibited the expression of N-cadherin, Snail and Vimentin, and promoted the expression of E-cadherin. Dex inhibited the expression of p-JAK2, p-STAT1 and p-STAT3. After the addition of JAK/STAT signaling pathway agonist IL-6, the inhibition of Dex on proliferation, migration and invasion of CC cells was reversed. And the addition of JAK/STAT signaling pathway inhibitor AG490 could counteract the excitatory effect of IL-6 on the pathway, at which time the cell proliferation, invasion and migration were significantly increased. In conclusion, our study demonstrated that Dex inhibited proliferation, migration, and invasion of cells in CC by blocking the JAK/STAT signaling pathway.


2021 ◽  
Author(s):  
Jinxiang Huang ◽  
Shengnan Lin ◽  
Feng Zhu ◽  
Dengsheng Chen ◽  
Fang Huang ◽  
...  

Abstract Object: To investigate the effects of Oleanolic acid (OA) on proliferation, apoptosis, migration, and invasion of human glioma cell U251, as well as IKK-β and MAPK signaling pathways.Methods: The binding of OA to IKK-β and MAPK signaling pathway essential proteins IKK-β, MAPK3, and MAPK4 was analyzed by molecular docking technique. U251 cells were treated with different concentrations of OA. The proliferation and apoptosis rates of U251 cells were detected by CCK-8 assay, MTT assay, cell cloning assay, and AnnexinⅤ FITC/PI double staining assay. Transwell chamber assay was used to detect migration and invasion of U251 cells. Western blot was used to detect and analyze the expression levels of CYP17A1, IKK-β, PTGS2 and MAPK3/4 protein in U251 cells after OA treatment. Finally, the transcriptome sequencing method was used to detect the differentially expressed genes in the two groups, and the GO and KEGG enrichment analysis were performed.Results: The results of molecular docking showed that OA could stably bind to IKK-β, MAPK3, and MAPK4 proteins. OA could not only effectively inhibit the proliferation and induce apoptosis of U251 cells (P < 0.05), but also significantly inhibit the invasion of U251 cells (P < 0.005). Western blot assay confirmed that OA could dramatically inhibit the protein expression levels of CYP17A1, IKK-β, PTGS2, MAPK3, and MAPK4 in U251 cells (P < 0.01). A total of 446 significantly differentially expressed genes were detected in transcriptome sequencing, of which 96 were up-regulated genes and 350 were down-regulated genes. These genes are mainly involved in processes such as inflammation, metabolism, immunity, and regulation of cell growth.Conclusions: OA may inhibit the proliferation, migration, and invasion of glioma U251 cells by binding key molecules of the IKK-β signaling pathway and essential target proteins of MAPK3 and MAPK4 in the MAPK signaling pathway.


2020 ◽  
Author(s):  
Fengqin Lu ◽  
Chunhong Li ◽  
Yuping Sun ◽  
Ting Jia ◽  
Na Li ◽  
...  

Abstract Background: Mounting evidences displayed that miRNAs play crucial roles in tumor initiation and development. However, the regulation and relevant mechanism of miR- miR-1825 in glioblastoma (GBM) remain unclear. Methods: qRT-PCR was used to detect miR-1825 and CDK14 mRNA expression. Western blot was applied for testing protein levels (VEGF, E-cadherin, N-cadherin, vimentin, β-catenin, c-myc, p-c-Jun). MTT and transwell assays were used for detecting GBM cell progression, including cell viability, migration, and invasion.Results: The results showed that miR-1825 was decreased in GBM tissue specimens by qRT-PCR and it was confirmed as a prognostic marker of GBM by Kaplan-Meier survival analysis. Moreover, we also found that miR-1825 up-regulation suppressed GBM cell viability, tumor growth, invasion and migration. Furthermore, CDK14 was first identified as the direct target of miR-1825 by Luciferase reporter assay. CDK14 acted as an oncogene in GBM development by Immunohistochemistry. In addition, Western blot analysis demonstrated that miR-1825 regulated Wnt/β-catenin signaling pathway in GBM development. Conclusion: In conclusion, miR-1825 up-regulation suppressed GBM progression by targeting CDK14 through Wnt/β-catenin pathway.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs. In this study, we investigated the role of miR-875 in GC. Methods: The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models. Related proteins were detected by Western blot. Results: The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors. Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5p can inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway. In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaohan Mao ◽  
Yaqian Jin ◽  
Tianyu Feng ◽  
Hao Wang ◽  
Dan Liu ◽  
...  

Osteosarcoma (OS) is the most common primary malignant bone cancer. An increasing number of studies have demonstrated that ginsenoside Rg3 (Rg3), which is extracted from the roots of the traditional Chinese herb Panax ginseng, plays a tumor suppression role in various malignant tumors. In the present study, we aimed at investigating the role of Rg3 in the proliferation, migration, and invasion of OS and at exploring the underlying mechanisms. Cell viability and proliferation were observed by MTT assay and crystal violet staining. The migration and invasion of cells were measured by wound-healing assay and Transwell method. Signaling pathway screening was investigated using luciferase reporter gene assay. qRT-PCR and western blot were performed to measure the expression of molecules involved in cell epithelial-mesenchymal transition (EMT), and Wnt/β-catenin pathway. Results suggested that Rg3 could not only inhibit proliferation but also hamper the migration and invasion of OS. qRT-PCR and western blot demonstrated that a reduced level of MMP2/MMP7/MMP9 was induced after Rg3 treatment. In addition, the expression levels of proteins related to EMT and the Wnt/β-catenin pathway were downregulated. In summary, our data revealed that Rg3 could inhibit the proliferation, migration, and invasion of OS cells. This effect of Rg3 might be mediated by downregulating MMP2, MMP7, and MMP9 expression and suppressing EMT as well as the Wnt/β-catenin pathway. Thus, Rg3 might be a potential agent for the treatment of OS.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Lei Jiang ◽  
Xiufang Shi ◽  
Meng Wang ◽  
Huaxia Chen

Objectives. To explore the effect and mechanism of miR-34a on the proliferation, migration, and invasion of keloid fibroblasts (KFB). Methods. Isolate and culture KFB and normal skin fibroblast (NFB), detect the mRNA expression levels of miR-34a and integrin β5 (SATB1) in KFB and NFB by RT-qPCR, and detect SATB1 by western blot. The level of protein expression, MTT method, Transwell method, RT-qPCR, and western blot were used to detect the effects of overexpression of miR-34a or inhibition of SATB1 expression on the proliferation, migration, and invasion of KFB cells and the expression of related proteins. The dual luciferase reporter gene test verifies the targeting relationship between miR-34a and SATB1. Results. Compared with NFB, the expression of miR-34a was downregulated in KFB and the mRNA and protein expression levels of SATB1 were upregulated. Overexpression of miR-34a or inhibition of SATB1 expression inhibited the proliferation, migration, and invasion of KFB. miR-34a can negatively regulate the expression of SATB1, and overexpression of SATB1 reverses the effects of overexpression of miR-34a on the proliferation, migration, and invasion of KFB. Conclusions. miR-34a inhibits the proliferation, migration, and invasion of keloid fibroblasts by downregulating the expression of SATB1.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Weiqun Hu ◽  
Wenfeng Yao ◽  
Haolin Li ◽  
Li Chen

Abstract The study explored the effect of miR-30e-5p on nasopharyngeal carcinoma (NPC). MiR-30e-5p levels in NPC cancer and adjacent normal samples, in metastatic and non-metastatic cancer samples of NPC, and in NP69 cell and five NPC cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between miR-30e-5p and MTA1 was confirmed by dual-luciferase reporter assay, Western blot and qRT-PCR. The viability, migration and invasion of 5-8F and 6-10B cells were determined by CCK-8, scratch test and transwell assays, respectively. The levels of migration-related proteins (vimentin and Snail) and invasion-related proteins (MMP2 and MMP3) in NPC cells were detected by Western blot. The results showed that low expression of miR-30e-5p was associated with HNSC cancer, NPC, metastasis of NPC and NPC cell lines. Overexpressed miR-30e-5p in HNSC cancer and NPC was predictive of a better prognosis of patients. In addition, the viability, migration and invasion were reduced by up-regulating miR-30e-5p in 5-8F cells, but promoted by down-regulated miR-30e-5p in 6-10B cells. MiR-30e-5p reversed the migration and invasion of NPC cells regulated by MTA1, and inhibited migration and invasion of NPC cells via regulating MTA1 expression.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jie Yao ◽  
Zefen Wang ◽  
Yong Cheng ◽  
Chao Ma ◽  
Yahua Zhong ◽  
...  

Abstract Background Glioma, the most common primary brain tumor, account Preparing figures for 30 to 40% of all intracranial tumors. Herein, we aimed to study the effects of M2 macrophage-derived exosomal microRNAs (miRNAs) on glioma cells. Methods First, we identified seven differentially expressed miRNAs in infiltrating macrophages and detected the expression of these seven miRNAs in M2 macrophages. We then selected hsa-miR-15a-5p (miR-15a) and hsa-miR-92a-3p (miR-92a) for follow-up studies, and confirmed that miR-15a and miR-92a were under-expressed in M2 macrophage exosomes. Subsequently, we demonstrated that M2 macrophage-derived exosomes promoted migration and invasion of glioma cells, while exosomal miR-15a and miR-92a had the opposite effects on glioma cells. Next, we performed the target gene prediction in four databases and conducted target gene validation by qRT-PCR, western blot and dual luciferase reporter gene assays. Results The results revealed that miR-15a and miR-92a were bound to CCND1 and RAP1B, respectively. Western blot assays demonstrated that interference with the expression of CCND1 or RAP1B reduced the phosphorylation level of AKT and mTOR, indicating that both CCND1 and RAP1B can activate the PI3K/AKT/mTOR signaling pathway. Conclusion Collectively, these findings indicate that M2 macrophage-derived exosomal miR-15a and miR-92a inhibit cell migration and invasion of glioma cells through PI3K/AKT/mTOR signaling pathway.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Haoqi Zhao ◽  
Lan Wang ◽  
Shufang Wang ◽  
Xihua Chen ◽  
Min Liang ◽  
...  

Abstract Background Metastasis and invasion are crucial in determining the mortality of cervical carcinoma (CC) patients. The epithelial–mesenchymal transition (EMT) is now a universal explanation for the mechanisms of tumor metastasis. Α-chimeric protein (α-chimaerin, CHN1) plays an important role in the regulation of signal transduction and development. However, the molecular regulatory relationships between CHN1 and CC progression in relation to EMT have not yet been identified. Methods The expression of CHN1 in CC tissues, adjacent tissues, and lymph node metastases from CC patients was detected by immunohistochemistry. Upregulation and knockdown of CHN1 were achieved by transfection of CC cells. The effect of CHN1 on cell proliferation was determined by CCK-8 and plate clone formation assays. Changes in migration and invasion capabilities were evaluated using scratch migration and transwell invasion assays. The effect of CHN1 overexpression and interference on xenograft tumor growth was determined by tumor weight and pathological analyses. The expression of EMT-related mRNAs was measured by qRT-PCR in transfected CC cells. EMT-related proteins and Akt/GSK-3β/Snail signaling pathway-related proteins were also evaluated by western blotting. Results CHN1 was overexpressed in CC tissues and was associated with lymph node metastasis and low survival in CC patients. Overexpression of CHN1 promoted cell proliferation, migration, and invasion in CC cells. In contrast, silencing of CHN1 inhibited these phenomena. Overexpression of CHN1 promoted tumor formation in an in vivo xenograft tumor mouse model, with increased tumor volumes and weights. In addition, CHN1 induced the expression of EMT-related transcription factors, accompanied by the decreased expression of epithelial markers and increased expression of mesenchymal markers. The Akt/GSK-3β/Snail signaling pathway was activated by overexpression of CHN1 in vitro, and activation of this pathway was inhibited by the signaling pathway inhibitor LY294002. Conclusion These results suggest that CHN1 promotes the development and progression of cervical carcinoma via the Akt/GSK-3β/Snail pathway by inducing EMT.


Sign in / Sign up

Export Citation Format

Share Document