scholarly journals Oleanolic Acid Inhibits the Proliferation and Invasion of U251Glioma Cells and Promotes their Apoptosis through the IKK-β, MAPK3, and MAPK4 Signaling Pathway

Author(s):  
Jinxiang Huang ◽  
Shengnan Lin ◽  
Feng Zhu ◽  
Dengsheng Chen ◽  
Fang Huang ◽  
...  

Abstract Object: To investigate the effects of Oleanolic acid (OA) on proliferation, apoptosis, migration, and invasion of human glioma cell U251, as well as IKK-β and MAPK signaling pathways.Methods: The binding of OA to IKK-β and MAPK signaling pathway essential proteins IKK-β, MAPK3, and MAPK4 was analyzed by molecular docking technique. U251 cells were treated with different concentrations of OA. The proliferation and apoptosis rates of U251 cells were detected by CCK-8 assay, MTT assay, cell cloning assay, and AnnexinⅤ FITC/PI double staining assay. Transwell chamber assay was used to detect migration and invasion of U251 cells. Western blot was used to detect and analyze the expression levels of CYP17A1, IKK-β, PTGS2 and MAPK3/4 protein in U251 cells after OA treatment. Finally, the transcriptome sequencing method was used to detect the differentially expressed genes in the two groups, and the GO and KEGG enrichment analysis were performed.Results: The results of molecular docking showed that OA could stably bind to IKK-β, MAPK3, and MAPK4 proteins. OA could not only effectively inhibit the proliferation and induce apoptosis of U251 cells (P < 0.05), but also significantly inhibit the invasion of U251 cells (P < 0.005). Western blot assay confirmed that OA could dramatically inhibit the protein expression levels of CYP17A1, IKK-β, PTGS2, MAPK3, and MAPK4 in U251 cells (P < 0.01). A total of 446 significantly differentially expressed genes were detected in transcriptome sequencing, of which 96 were up-regulated genes and 350 were down-regulated genes. These genes are mainly involved in processes such as inflammation, metabolism, immunity, and regulation of cell growth.Conclusions: OA may inhibit the proliferation, migration, and invasion of glioma U251 cells by binding key molecules of the IKK-β signaling pathway and essential target proteins of MAPK3 and MAPK4 in the MAPK signaling pathway.

2021 ◽  
Author(s):  
Jinxiang Huang ◽  
Shengnan Lin ◽  
Feng Zhu ◽  
Dengsheng Chen ◽  
Fang Huang ◽  
...  

Abstract ObjectTo investigate the effects of Oleanolic acid (OA) on proliferation, apoptosis, migration, and invasion of human glioma cell U251, as well as IKK-β and MAPK signaling pathways.MethodsThe binding of OA to IKK-β and MAPK signaling pathway essential proteins IKK-β, MAPK3, and MAPK4 was analyzed by molecular docking technique. U251 cells were treated with different concentrations of OA. The proliferation and apoptosis rates of U251 cells were detected by CCK-8 assay, MTT assay, cell cloning assay, and AnnexinⅤ FITC/PI double staining assay. Transwell chamber assay was used to detect migration and invasion of U251 cells. Finally, Western blotting was used to detect the protein expression levels of IKK-β, MAPK3, and MAPK4 in U251 cells treated with OA.ResultsThe results of molecular docking showed that OA could stably bind to IKK-β, MAPK3, and MAPK4 proteins. OA could not only effectively inhibit the proliferation and induce apoptosis of U251 cells (P < 0.05), but also significantly inhibit the invasion of U251 cells (P < 0.05). Western blot assay confirmed that OA could dramatically inhibit the protein expression levels of IKK-β, MAPK3, and MAPK4 in U251 cells (P < 0.05).ConclusionsOA may inhibit the proliferation, migration, and invasion of glioma U251 cells by binding key molecules of the IKK-β signaling pathway and essential target proteins of MAPK3 and MAPK4 in the MAPK signaling pathway.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yu Li ◽  
Guangle Qin ◽  
Jinyun Du ◽  
Peng Yue ◽  
Yanling Zhang ◽  
...  

Circular RNA LDLRAD3 behaved as an oncogene in several malignancies, but its effects in NSCLC and the involvement of downstream molecules and activation of signaling pathways had not been fully reported. We planned to explore how LDLRAD3 facilitated the malignancy of NSCLC. QRT-PCR was performed to evaluate the expression levels of LDLRAD3, miR-20a-5p, and SLC7A5 in NSCLC tissues and cells. si-LDLRAD3 was transfected to A549 and H1299 cells to knock down intrinsic LDLRAD3 to determine its oncogenic roles. CCK-8 assay and transwell assay were executed to assess cell proliferative, migrative, and invasive abilities. Dual-luciferase reporter (DLR) assay was manipulated to verify the ENCORI-predicted relationships between LDLRAD3 and miR-20a-5p and between miR-20a-5p and SLC7A5. Western blot, immunofluorescent assay, and immunohistochemistry were applied to explore the expression levels of SLC7A5, and the levels of mTORC1 pathway-related proteins were evaluated using western blot. Rescue experiments were conducted by transfecting si-LDLRAD3, miR-20a-5p inhibitor, and si-SLC7A5 to explore the influence of the LDLRAD3-miR-20a-5p-SLC7A5 axis on the malignant behaviors of NSCLC cells. The expression levels of LDLRAD3 and SLC7A5 were boosted, whereas miR-20a-5p was impeded in NSCLC tissues and cell lines. Knockdown of LDLRAD3 weakened the proliferation, migration, and invasion of A549 and H1299 cells. LDLRAD3 was verified to sponge miR-20a-5p and miR-20a-5p targeted SLC7A5. LDLRAD3 activated the mTORC1 singling pathway via the miR-20a-5p-SLC7A5 axis to strengthen the malignant properties of A549 and H1299 cells. We concluded that LDLRAD3 exerted oncogenic effects via the miR-20a-5p-SLC7A5 axis to activate the mTORC1 signaling pathway in NSCLC. Our findings enlightened that LDLRAD3 could become a potential therapeutic target in the treatment and management of NSCLC.


2017 ◽  
Vol 41 (5) ◽  
pp. 1851-1864 ◽  
Author(s):  
Ren-hong Huang ◽  
Ying-jun Quan ◽  
Jin-hong Chen ◽  
Ting-feng Wang ◽  
Ming Xu ◽  
...  

Background: Osteopontin (OPN) is highly expressed in colorectal cancer (CRC) and is associated with disease progression in vivo. High levels of OPN have been demonstrated to predict low survival rates in CRC. Autophagy is a process of self-digestion, which is thought to play a significant role in carcinogenesis. However, the mechanisms of OPN's effects on CRC cell autophagy have not been elucidated. Therefore, we aimed to investigate possible mechanisms of OPN's effects on CRC autophagy. Methods: HCT116 cell proliferation, apoptosis, and migration and invasion ability were identified by cell counting k¡t-8 assay, flow cytometry, wound healing assay, and transwell chamber invasion assay, respectively. The ratios of proteins LC3-II/LC3-I, P62, and Atg7 were analyzed by Western-blot. Expressions of Beclin-1, Atg4b, Bnip3, and Vps34, both in transcriptional and translational levels, were analyzed and compared by RT-PCR and Western blot. Immunofluorescence and co-focusing experiments were used to investigate the formation of autophagosomes. Results: The results showed that OPN can promote cell proliferation, migration, and invasion, as well as inhibit cell apoptosis. It was also demonstrated that OPN could inhibit cell autophagy. Further experiments revealed that the inhibitory effect of OPN on autophagy could be reversed by blocking the p38 MAPK pathway in HCT116 cells. Conclusion: OPN is involved in HCT116 cell progression and is capable of inhibiting cell autophagy possibly by activating the p38 MAPK signaling pathway, implying that OPN could be a potential novel molecular therapeutic biomarker in patients with CRC.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Li ◽  
Shengnan He ◽  
Jishun Tang ◽  
Nana Ding ◽  
Xiaoyan Chu ◽  
...  

Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.


2020 ◽  
Vol 15 ◽  
Author(s):  
Mingxuan Yang ◽  
Liangtao Zhao ◽  
Xuchang Hu ◽  
Haijun Feng ◽  
Xuewen Kang

Background: Osteosarcoma (OS) is one of the most common primary malignant bone tumors in teenagers. Emerging studies demonstrated TWEAK and Fn14 were involved in regulating cancer cell differentiation, proliferation, apoptosis, migration and invasion. Objective: The present study identified differently expressed mRNAs and lncRNAs after anti-TWEAK treatment in OS cells using GSE41828. Methods: We identified 922 up-regulated mRNAs, 863 downregulated mRNAs, 29 up-regulated lncRNAs, and 58 down-regulated lncRNAs after anti-TWEAK treatment in OS cells. By constructing PPI networks, we identified several key proteins involved in anti-TWEAK treatment in OS cells, including MYC, IL6, CD44, ITGAM, STAT1, CCL5, FN1, PTEN, SPP1, TOP2A, and NCAM1. By constructing lncRNAs coexpression networks, we identified several key lncRNAs, including LINC00623, LINC00944, PSMB8-AS1, LOC101929787. Result: Bioinformatics analysis revealed DEGs after anti-TWEAK treatment in OS were involved in regulating type I interferon signaling pathway, immune response related pathways, telomere organization, chromatin silencing at rDNA, and DNA replication. Bioinformatics analysis revealed differently expressed lncRNAs after antiTWEAK treatment in OS were related to telomere organization, protein heterotetramerization, DNA replication, response to hypoxia, TNF signaling pathway, PI3K-Akt signaling pathway, Focal adhesion, Apoptosis, NF-kappa B signaling pathway, MAPK signaling pathway, FoxO signaling pathway. Conclusion: : This study provided useful information for understanding the mechanisms of TWEAK underlying OS progression and identifying novel therapeutic markers for OS.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jie Yao ◽  
Zefen Wang ◽  
Yong Cheng ◽  
Chao Ma ◽  
Yahua Zhong ◽  
...  

Abstract Background Glioma, the most common primary brain tumor, account Preparing figures for 30 to 40% of all intracranial tumors. Herein, we aimed to study the effects of M2 macrophage-derived exosomal microRNAs (miRNAs) on glioma cells. Methods First, we identified seven differentially expressed miRNAs in infiltrating macrophages and detected the expression of these seven miRNAs in M2 macrophages. We then selected hsa-miR-15a-5p (miR-15a) and hsa-miR-92a-3p (miR-92a) for follow-up studies, and confirmed that miR-15a and miR-92a were under-expressed in M2 macrophage exosomes. Subsequently, we demonstrated that M2 macrophage-derived exosomes promoted migration and invasion of glioma cells, while exosomal miR-15a and miR-92a had the opposite effects on glioma cells. Next, we performed the target gene prediction in four databases and conducted target gene validation by qRT-PCR, western blot and dual luciferase reporter gene assays. Results The results revealed that miR-15a and miR-92a were bound to CCND1 and RAP1B, respectively. Western blot assays demonstrated that interference with the expression of CCND1 or RAP1B reduced the phosphorylation level of AKT and mTOR, indicating that both CCND1 and RAP1B can activate the PI3K/AKT/mTOR signaling pathway. Conclusion Collectively, these findings indicate that M2 macrophage-derived exosomal miR-15a and miR-92a inhibit cell migration and invasion of glioma cells through PI3K/AKT/mTOR signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiao-hua Li ◽  
Fu-ling Chen ◽  
Hong-lin Shen

Abstract Background Bone disease causes short-term or long-term physical pain and disability. It is necessary to explore new drug for bone-related disease. This study aimed to explore the role and mechanism of Salidroside in promoting osteogenic differentiation of adipose-derived stromal cells (ADSCs). Methods ADSCs were isolated and treated with different dose of Salidroside. Cell count kit-8 (CCK-8) assay was performed to assess the cell viability of ADSCs. Then, ALP and ARS staining were conducted to assess the early and late osteogenic capacity of ADSCs, respectively. Then, differentially expressed genes were obtained by R software. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed genes were further analyzed. The expression of OCN, COL1A1, RUNX2, WNT3A, and β-catenin were measured by real-time PCR and Western blot analysis. Last, β-catenin was silenced by small interfering RNA. Results Salidroside significantly increased the ADSCs viability at a dose-response manner. Moreover, Salidroside enhanced osteogenic capacity of ADSCs, which are identified by enhanced ALP activity and calcium deposition. A total of 543 differentially expressed genes were identified between normal and Salidroside-treated ADSCs. Among these differentially expressed genes, 345 genes were upregulated and 198 genes were downregulated. Differentially expressed genes enriched in the Wnt/β-catenin signaling pathway. Western blot assay indicated that Salidroside enhanced the WNT3A and β-catenin expression. Silencing β-catenin partially reversed the promotion effects of Salidroside. PCR and Western blot results further confirmed these results. Conclusion Salidroside promoted osteogenic differentiation of ADSCs through Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 11 (11) ◽  
pp. 2137-2145
Author(s):  
Xuejuan Zhu ◽  
Danqian Lu

Background: Sulfiredoxin (Srx) has been identified to play important roles in the development of various cancers. However, the precise effects and underlying mechanism of Srx on the progression of HCC are far from being fully understood. Materials and Methods: The abundances of Srx in THLE-2 cell and HCC cell lines were determined by western blot and RT-qPCR. Next, SK-Hep-1 cells were transfected with shRNA-Srx or shRNA-NC and treated with TBHQ (an extracellular signal-regulated kinase (ERK) activator) for functional experiments. Then, CCK8 and colony formation assays were used to determine cell proliferation and clone-forming abilities in vitro. Cell migration and invasion were assessed via wound healing and transwell assays. The expression of MMP2, MMP9 and key members in ERK/nuclear factor E2 related factor (Nrf2) signaling pathway was detected by performing western blot analysis. Results: We reported evidence that Srx was frequently up-regulated in HCC cell lines. Srx interference constrained cell proliferation, colony formation rate, migration and invasion of SK-Hep-1 cells. Moreover, mechanistic investigations indicated that Srx interference significantly inhibited the activation of ERK/Nrf2 signaling pathway, and ERK activator TBHQ can reverse the functions of Srx interference in SK-Hep-1 cells. Conclusion: Overall, Downregulation of Srx might impede HCC progression by suppressing ERK/Nrf2 signaling pathway. Findings in the current study reported the functional involvement and molecular mechanism of Srx in HCC, suggesting that Srx might have a potential therapeutic value in HCC treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dan He ◽  
Qiang Li ◽  
Guangli Du ◽  
Guofeng Meng ◽  
Jijia Sun ◽  
...  

Background: Guizhi has the pharmacological activity of anti-inflammatory. However, the effect mechanism of Guizhi against nephrotic syndrome (NS) remains unclear. A network pharmacological approach with experimental verification in vitro and in vivo was performed to investigate the potential mechanisms of Guizhi to treat NS.Methods: Active compounds and potential targets of Guizhi, as well as the related targets of NS were obtained from the public databases. The intersecting targets of Guizhi and NS were obtained through Venny 2.1.0. The key targets and signaling pathways were determined by protein-protein interaction (PPI), genes ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. And the overall network was constructed with Cytoscape. Molecular docking verification was carried out by AutoDock Vina. Finally, in vitro and in vivo experiments were performed to verify the mechanism of Guizhi to treat NS.Results: 63 intersecting targets were obtained, and the top five key targets mainly involed in NF- Kappa B and MAPK signaling pathway. In the overall network, cinnamaldehyde (CA) was the top one active compound with the highest degree value. The molecular docking showed that the top five key targets were of good binding activity with the active components of Guizhi. To in vitro experiment, CA, the main active component of Guizhi, inhibited the secretion of IL-1β, IL-6, TNF-α in LPS challenged RAW264.7 cells, and down regulated the protein expression of p-NF-κB p65 and p-p38 MAPK in LPS challenged RAW264.7 cells. In vitro experiment showed that, 24 urinary protein and renal function were increased in ADR group. To western blot, CA down regulated the protein expression of p-p38 MAPK in rats of adriamycin-induced nephropathy.Conclusion: CA might be the main active component of Guizhi to treat NS, and the underlying mechanism might mainly be achieved by inhibiting MAPK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document