Characterizing macrophage diversity in metastasis-bearing lungs reveals a lipid-associated macrophage subset

2021 ◽  
pp. canres.0101.2021
Author(s):  
Danielle N. Huggins ◽  
Rebecca S. LaRue ◽  
Ying Wang ◽  
Todd P. Knutson ◽  
Yingzheng Xu ◽  
...  
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alma Andersson ◽  
Ludvig Larsson ◽  
Linnea Stenbeck ◽  
Fredrik Salmén ◽  
Anna Ehinger ◽  
...  

AbstractIn the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra- and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. By integration with single cell data, we spatially map tumor-associated cell types to find tertiary lymphoid-like structures, and a type I interferon response overlapping with regions of T-cell and macrophage subset colocalization. We construct a predictive model to infer presence of tertiary lymphoid-like structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define a high resolution map of cellular interactions in tumors and provide tools generalizing across tissues and diseases.


2019 ◽  
Author(s):  
Sven D. Sommerfeld ◽  
Christopher Cherry ◽  
Remi M. Schwab ◽  
Liam Chung ◽  
David R Maestas ◽  
...  

SummaryMacrophages play diverse roles in the immune response to infection, cancer, and wound healing where they respond to local environmental signals, yet identification and phenotypic characterization of functional subsets in vivo remains limited. We performed single cell RNA sequencing analysis on differentiated macrophages sorted from a biologic matrix-induced regenerative environment versus a synthetic biomaterial foreign body response (FBR), characterized by TH2/interleukin (IL)-4 and TH17/IL-17, respectively. In the regenerative environment, unbiased clustering and pseudotime analysis revealed distinct macrophage subsets responsible for antigen presentation, chemoattraction, and phagocytosis, as well as a small population with expression profiles of both dendritic cells and skeletal muscle. In the FBR environment, we identified a CD9hi+IL-36γ+ macrophage subset that expressed TH17-associated molecules characteristic of certain auto-immune responses that were virtually absent in mice lacking the IL-17 receptor. Surface marker combinations including CD9 and CD301b defined macrophage fibrotic and regenerative subsets enabling functional assessment and identification in human tissue. Application of the terminal macrophage subsets to train the SingleCellNet algorithm and comparison to human and mouse macrophages in tumor, lung, and liver suggest broad relevance of macrophage classification. These distinct macrophage subsets demonstrate previously unrecognized myeloid phenotypes involved in different tissue responses and provide new targets for potential therapeutic modulation of certain pathologic states and tissue repair.


2016 ◽  
Vol 197 (6) ◽  
pp. 2229-2238 ◽  
Author(s):  
Christian Machacek ◽  
Verena Supper ◽  
Vladimir Leksa ◽  
Goran Mitulovic ◽  
Andreas Spittler ◽  
...  

2020 ◽  
Vol 21 (21) ◽  
pp. 7955 ◽  
Author(s):  
Jan Korbecki ◽  
Mateusz Olbromski ◽  
Piotr Dzięgiel

A neoplastic tumor consists of cancer cells that interact with each other and non-cancerous cells that support the development of the cancer. One such cell are tumor-associated macrophages (TAMs). These cells secrete many chemokines into the tumor microenvironment, including especially a large amount of CCL18. This chemokine is a marker of the M2 macrophage subset; this is the reason why an increase in the production of CCL18 is associated with the immunosuppressive nature of the tumor microenvironment and an important element of cancer immune evasion. Consequently, elevated levels of CCL18 in the serum and the tumor are connected with a worse prognosis for the patient. This paper shows the importance of CCL18 in neoplastic processes. It includes a description of the signal transduction from PITPNM3 in CCL18-dependent migration, invasion, and epithelial-to-mesenchymal transition (EMT) cancer cells. The importance of CCL18 in angiogenesis has also been described. The paper also describes the effect of CCL18 on the recruitment to the cancer niche and the functioning of cells such as TAMs, regulatory T cells (Treg), cancer-associated fibroblasts (CAFs) and tumor-associated dendritic cells (TADCs). The last part of the paper describes the possibility of using CCL18 as a therapeutic target during anti-cancer therapy.


2015 ◽  
Vol 83 (7) ◽  
pp. 2627-2635 ◽  
Author(s):  
Carrie E. Lasky ◽  
Rachel M. Olson ◽  
Charles R. Brown

Infection of C3H mice withBorrelia burgdorferi, the causative agent of Lyme disease, reliably produces an infectious arthritis and carditis that peak around 3 weeks postinfection and then spontaneously resolve. Macrophage polarization has been suggested to drive inflammation, the clearance of bacteria, and tissue repair and resolution in a variety of infectious disease models. During Lyme disease it is clear that macrophages are capable of clearingBorreliaspirochetes and exhausted neutrophils; however, the role of macrophage phenotype in disease development or resolution has not been studied. Using classical (NOS2) and alternative (CD206) macrophage subset-specific markers, we determined the phenotype of F4/80+macrophages within the joints and heart throughout the infection time course. Within the joint, CD206+macrophages dominated throughout the course of infection, and NOS2+macrophage numbers became elevated only during the peak of inflammation. We also found dual NOS2+CD206+macrophages which increased during resolution. In contrast to findings for the ankle joints, numbers of NOS2+and CD206+macrophages in the heart were similar at the peak of inflammation. 5-Lipoxygenase-deficient (5-LOX−/−) mice, which display a failure of Lyme arthritis resolution, recruited fewer F4/80+cells to the infected joints and heart, but macrophage subset populations were unchanged. These results highlight differences in the inflammatory infiltrates during Lyme arthritis and carditis and demonstrate the coexistence of multiple macrophage subsets within a single inflammatory site.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 529 ◽  
Author(s):  
Hénaut ◽  
Candellier ◽  
Boudot ◽  
Grissi ◽  
Mentaverri ◽  
...  

Cardiovascular disease (CVD) is an important cause of death in patients with chronic kidney disease (CKD), and cardiovascular calcification (CVC) is one of the strongest predictors of CVD in this population. Cardiovascular calcification results from complex cellular interactions involving the endothelium, vascular/valvular cells (i.e., vascular smooth muscle cells, valvular interstitial cells and resident fibroblasts), and monocyte-derived macrophages. Indeed, the production of pro-inflammatory cytokines and oxidative stress by monocyte-derived macrophages is responsible for the osteogenic transformation and mineralization of vascular/valvular cells. However, monocytes/macrophages show the ability to modify their phenotype, and consequently their functions, when facing environmental modifications. This plasticity complicates efforts to understand the pathogenesis of CVC—particularly in a CKD setting, where both uraemic toxins and CKD treatment may affect monocyte/macrophage functions and thereby influence CVC. Here, we review (i) the mechanisms by which each monocyte/macrophage subset either promotes or prevents CVC, and (ii) how both uraemic toxins and CKD therapies might affect these monocyte/macrophage functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danilo Pellin ◽  
Natalie Claudio ◽  
Zihan Guo ◽  
Tahereh Ziglari ◽  
Ferdinando Pucci

Lymph nodes are key lymphoid organs collecting lymph fluid and migratory cells from the tissue area they survey. When cancerous cells arise within a tissue, the sentinel lymph node is the first immunological organ to mount an immune response. Sub-capsular sinus macrophages (SSMs) are specialized macrophages residing in the lymph nodes that play important roles as gatekeepers against particulate antigenic material. In the context of cancer, SSMs capture tumor-derived extracellular vesicles (tEVs), a form of particulate antigen released in high amounts by tumor cells. We and others have recently demonstrated that SSMs possess anti-tumor activity because in their absence tumors progress faster. A comprehensive profiling of SSMs represents an important first step to identify the cellular and molecular mechanisms responsible for SSM anti-tumor activity. Unfortunately, the isolation of SSMs for molecular analyses is very challenging. Here, we combined an optimized dissociation protocol, careful marker selection and stringent gating strategies to highly purify SSMs. We provide evidence of decreased T and B cell contamination, which allowed us to reveal the gene expression profile of this elusive macrophage subset. Squamous cell carcinomas induced an increase in the expression of Fc receptors, lysosomal and proteasomal enzymes in SSMs. Imaging of mouse and patient lymph nodes confirmed the presence of the top differentially expressed genes. These results suggest that SSMs respond to tumor formation by upregulating the machinery necessary for presentation of tumor particulate antigens to B cells.


2021 ◽  
Author(s):  
Dotan Hoffman ◽  
Yaara Tevet ◽  
Gili Rosenberg ◽  
Leia Vainman ◽  
Aryeh Solomon ◽  
...  

AbstractInteractions between intracellular bacteria and mononuclear phagocytes give rise to diverse cellular phenotypes that may determine the outcome of infection. Recent advances in single cell RNA-seq (scRNA-seq) have identified multiple subsets within the mononuclear population defined by unique molecular features, but the implications to their function during infection is unknown. Here, we applied high resolution kinetic analysis using microscopy, flow cytometry and scRNA-seq to survey the mononuclear niche of intracellular Salmonella Typhimurium (S.Tm) during early systemic infection in mice. We describe an eclipse like growth kinetics in the spleen, with a first phase of bacterial control mediated by tissue resident red pulp macrophages. A second phase involved bacterial growth mediated by intracellular replication within a macrophage population we termed CD9 macrophages, that originate from non-classical monocytes. Nr4a1e2−/− mice, specifically depleted of non-classical monocytes but not other mononuclear cells, are more resistant to S.Tm infection. Our study underscores a cell-type specific host-pathogen interaction that determines early infection growth dynamics and has implications to the infection outcome of the entire organism.


2018 ◽  
Vol 11 (2) ◽  
pp. 371-372
Author(s):  
Jae Joong Lee ◽  
Min Woo Lee ◽  
Tae Shik Kim ◽  
Joon Woo Song ◽  
Hyeong Soo Nam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document