scholarly journals Myocarditis with COVID-19 mRNA Vaccines

Author(s):  
Biykem Bozkurt ◽  
Ishan Kamat ◽  
Peter J. Hotez

Myocarditis has been recognized as a rare complication of coronavirus 2019 (COVID-19) mRNA vaccinations, especially in young adult and adolescent males. According to the U.S. Centers for Disease Control (CDC), myocarditis/pericarditis rates are approximately 12.6 cases per million doses of second dose mRNA vaccine among 12-39-year-olds. In reported cases, patients with myocarditis invariably presented with chest pain, usually 2-3 days after a second dose of mRNA vaccination and had elevated cardiac troponin levels. ECG was abnormal with ST elevations in most, and cardiac MRI was suggestive of myocarditis in all tested patients. There was no evidence of acute COVID-19 or other viral infections. In one case, a cardiomyopathy gene panel was negative, but autoantibody levels against certain self-antigens and frequency of natural killer cells were increased. Although the mechanisms for development of myocarditis are not clear, molecular mimicry between the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and self-antigens, trigger of preexisting dysregulated immune pathways in certain individuals, immune response to mRNA and activation of immunological pathways, and dysregulated cytokine expression have been proposed. The reasons for male predominance in myocarditis cases are unknown, but possible explanations relate to sex hormone differences in immune response and myocarditis, and also under-diagnosis of cardiac disease in women. Almost all patients had resolution of symptoms and signs, and improvement in diagnostic markers and imaging with or without treatment. Despite rare cases of myocarditis, the benefit-risk assessment for COVID-19 vaccination shows a favorable balance for all age and sex groups; therefore COVID-19 vaccination is recommended for everyone 12 years of age and older.

2020 ◽  
Vol 21 (4) ◽  
pp. 21-31
Author(s):  
T.M. Guseynov ◽  
◽  
R.T. Guliyeva ◽  
F.R. Yakhyayeva ◽  
◽  
...  

ABSTRACT. Selenium as an essential trace element takes part in the regulation of many vital processes. This is realized with the help of over 25 selenoproteins that affect oxidative stress, immune response, hormonal metabolism, cognitive function, etc. Recently (in the next 30 - 40 years), there have been reports of the effect on viral infections, which have now become widespread. It turned out that almost all RNA viruses are selenium-dependent objects, that is, their genome contains the codes of the most important selenium containing proteins, including such as glutathione peroxidase, thioredoxinreductase, selenium-P protein, etc. Their synthesis during the development of a viral infection at the expense of the host leads to a weakening of the synthesis of the body's own intracellular selenium proteins, which contributes to the development of oxidative stress and a failure of the immune response. And this leads to the devastation of the selenium depot of the body, intended for the synthesis of its selenium proteins, which participate in vital regulatory processes. This circumstance determines, to replenish the body's resources with selenium, the expediency of using selenium-containing pharmacopoeia preparations as adjuvant in the treatment of RNA viral infections.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Anca Bobircă ◽  
Florin Bobircă ◽  
Ioan Ancuța ◽  
Anca Florescu ◽  
Mihai Bojincă ◽  
...  

Thrombocytopenia is defined as a platelet count below 150,000/mm3 for adults. There is still controversy about whether individuals with platelet counts of 100,000/mm3 to 150,000/mm3 should be classified as having genuine thrombocytopenia or borderline thrombocytopenia. Thrombocytopenia is considered mild when the platelet count is between 70,000 and 150,000/mm3 and severe if the count is less than 20,000/mm3. Thrombocytopenia in rheumatoid arthritis is a rare complication, with an incidence estimated between 3 and 10%. The main etiological aspects include drug-induced thrombocytopenia and immune thrombocytopenic purpura. The most common hematological abnormalities in SARS-CoV-2 infection are lymphopenia and thrombocytopenia. It has been observed that the severity of thrombocytopenia correlates with the severity of the infection, being a poor prognosis indicator and a risk factor for mortality. COVID-19 can stimulate the immune system to destroy platelets by increasing the production of autoantibodies and immune complexes. Autoimmunity induced by viral infections can be related to molecular mimicry, cryptic antigen expression and also spreading of the epitope. During the COVID-19 pandemic, it is of great importance to include the SARS-CoV-2 infection in differential diagnoses, due to the increased variability in forms of presentation of this pathology. In this review, our aim is to present one of the most recently discovered causes of thrombocytopenia, which is the SARS-CoV-2 infection and the therapeutic challenges it poses in association with an autoimmune disease such as rheumatoid arthritis.


2021 ◽  
Vol 22 (14) ◽  
pp. 7538
Author(s):  
Hitomi Sugino ◽  
Yu Sawada ◽  
Motonobu Nakamura

IgA, previously called Henoch-Schönlein vasculitis, is an essential immune component that drives the host immune response to the external environment. As IgA has the unique characteristic of a flexible response to broad types of microorganisms, it sometimes causes an autoreactive response in the host human body. IgA vasculitis and related organ dysfunction are representative IgA-mediated autoimmune diseases; bacterial and viral infections often trigger IgA vasculitis. Recent drug developments and the presence of COVID-19 have revealed that these agents can also trigger IgA vasculitis. These findings provide a novel understanding of the pathogenesis of IgA vasculitis. In this review, we focus on the characteristics of IgA and symptoms of IgA vasculitis and other organ dysfunction. We also mention the therapeutic approach, biomarkers, novel triggers for IgA vasculitis, and epigenetic modifications in patients with IgA vasculitis.


Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Chathura D. Suraweera ◽  
Mark G. Hinds ◽  
Marc Kvansakul

Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.


Author(s):  
Karthick Dharmalingam ◽  
Amandeep Birdi ◽  
Sojit Tomo ◽  
Karli Sreenivasulu ◽  
Jaykaran Charan ◽  
...  

AbstractNutritional deficiency is associated with impaired immunity and increased susceptibility to infections. The complex interactions of trace elements with the macromolecules trigger the effective immune response against the viral diseases. The outcome of various viral infections along with susceptibility is affected by trace elements such as zinc, selenium, iron, copper, etc. due to their immuno-modulatory effects. Available electronic databases have been comprehensively searched for articles published with full text available and with the key words “Trace elements”, “COVID-19”, “Viral Infections” and “Immune Response” (i.e. separately Zn, Se, Fe, Cu, Mn, Mo, Cr, Li, Ni, Co) appearing in the title and abstract. On the basis of available articles we have explored the role of trace elements in viral infections with special reference to COVID-19 and their interactions with the immune system. Zinc, selenium and other trace elements are vital to triggerTH1 cells and cytokine-mediated immune response for substantial production of proinflammatory cytokines. The antiviral activity of some trace elements is attributed to their inhibitory effect on viral entry, replication and other downstream processes. Trace elements having antioxidants activity not only regulate host immune responses, but also modify the viral genome. Adequate dietary intake of trace elements is essential for activation, development, differentiation and numerous functions.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S326-S327
Author(s):  
Simone A Thair ◽  
Yudong He ◽  
Yehudit Hasin-Brumshtein ◽  
Suraj Sakaram ◽  
Rushika R Pandya ◽  
...  

Abstract Background COVID-19 is a pandemic caused by the SARS-CoV-2 virus that shares and differs in clinical characteristics of known viral infections. Methods We obtained RNAseq profiles of 62 prospectively enrolled COVID-19 patients and 24 healthy controls (HC). We collected 23 independent studies profiling 1,855 blood samples from patients covering six viruses (influenza, RSV, HRV, Ebola, Dengue and SARS-CoV-1). We studied host whole-blood transcriptomic responses in COVID-19 compared to non-COVID-19 viral infections to understand similarities and differences in host response. Gene signature threshold was absolute effect size ≥1, FDR ≤ 0.05%. Results Differential gene expression of COVID-19 vs HC are highly correlated with non-COVID-19 vs HC (r=0.74, p< 0.001). We discovered two gene signatures: COVID-19 vs HC (2002 genes) (COVIDsig) and non-COVID-19 vs HC (635 genes) (nonCOVIDsig). Pathway analysis of over-expressed signature genes in COVIDsig or nonCOVIDsig identified similar pathways including neutrophil activation, innate immune response, immune response to viral infection and cytokine production. Conversely, for under-expressed genes, pathways indicated repression of lymphocyte differentiation and activation (Fig1). Intersecting the two gene signatures found two genes significantly oppositely regulated (ACO1, ATL3). We derived a third gene signature using COCONUT to compare COVID-19 to non-COVID-19 viral infections (416 genes) (Fig2). Pathway analysis did not result in significant enrichment, suggesting identification of novel biology (Fig1). Statistical deconvolution of bulk transcriptomic data found M1 macrophages, plasmacytoid dendritic cells, CD14+ monocytes, CD4+ T cells and total B cells changed in the same direction across COVID-19 and non-COVID-19 infections. Cell types that increased in COVID-19 relative to non-COVID-19 were CD56bright NK cells, M2 macrophages and total NK cells. Those that decreased in non-COVID-19 relative to COVID-19 were CD56dim NK cells & memory B cells and eosinophils (Fig3). Figure 1 Figure 2 Figure 3 Conclusion The concordant and discordant responses mapped here provide a window to explore the pathophysiology of COVID-19 vs other viral infections and show clear differences in signaling pathways and cellularity as part of the host response to SARS-CoV-2. Disclosures Simone A. Thair, PhD, Inflammatix, Inc. (Employee, Shareholder) Yudong He, PhD, Inflammatix Inc. (Employee) Yehudit Hasin-Brumshtein, PhD, Inflammatix (Employee, Shareholder) Suraj Sakaram, MS in Biochemistry and Molecular Biology, Inflammatix (Employee, Other Financial or Material Support, stock options) Rushika R. Pandya, MS, Inflammatix Inc. (Employee, Shareholder) David C. Rawling, PhD, Inflammatix Inc. (Employee, Shareholder) Purvesh Khatri, PhD, Inflammatix Inc. (Shareholder) Timothy Sweeney, MD, PHD, Inflammatix, Inc. (Employee, Shareholder)


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 885
Author(s):  
Georgia Fousteri ◽  
Amy Dave Jhatakia

Viral infections are a natural part of our existence. They can affect us in many ways that are the result of the interaction between the viral pathogen and our immune system. Most times, the resulting immune response is beneficial for the host. The pathogen is cleared, thus protecting our vital organs with no other consequences. Conversely, the reaction of our immune system against the pathogen can cause organ damage (immunopathology) or lead to autoimmune disease. To date, there are several mechanisms for virus-induced autoimmune disease, including molecular mimicry and bystander activation, in support of the “fertile field” hypothesis (terms defined in our review). In contrast, viral infections have been associated with protection from autoimmunity through mechanisms that include Treg invigoration and immune deviation, in support of the “hygiene hypothesis”, also defined here. Infection with lymphocytic choriomeningitis virus (LCMV) is one of the prototypes showing that the interaction of our immune system with viruses can either accelerate or prevent autoimmunity. Studies using mouse models of LCMV have helped conceive and establish several concepts that we now know and use to explain how viruses can lead to autoimmune activation or induce tolerance. Some of the most important mechanisms established during the course of LCMV infection are described in this short review.


2016 ◽  
Vol 9 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Upasana Shokal ◽  
Ioannis Eleftherianos

Despite important progress in identifying the molecules that participate in the immune response of Drosophila melanogaster to microbial infections, the involvement of thioester-containing proteins (TEPs) in the antibacterial immunity of the fly is not fully clarified. Previous studies mostly focused on identifying the function of TEP2, TEP3 and TEP6 molecules in the D. melanogaster immune system. Here, we investigated the role of TEP4 in the regulation and function of D. melanogaster host defense against 2 virulent pathogens from the genus Photorhabdus, i.e. the insect pathogenic bacterium Photorhabdus luminescens and the emerging human pathogen P. asymbiotica. We demonstrate that Tep4 is strongly upregulated in adult flies following the injection of Photorhabdus bacteria. We also show that Tep4 loss-of-function mutants are resistant to P. luminescens but not to P. asymbiotica infection. In addition, we find that inactivation of Tep4 results in the upregulation of the Toll and Imd immune pathways, and the downregulation of the Jak/Stat and Jnk pathways upon Photorhabdus infection. We document that loss of Tep4 promotes melanization and phenoloxidase activity in the mutant flies infected with Photorhabdus. Together, these findings generate novel insights into the immune role of TEP4 as a regulator and effector of the D. melanogaster antibacterial immune response.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ma. Del Rocío Baños-Lara ◽  
Boyang Piao ◽  
Antonieta Guerrero-Plata

Mucins (MUC) constitute an important component of the inflammatory and innate immune response. However, the expression of these molecules by respiratory viral infections is still largely unknown. Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are two close-related paramyxoviruses that can cause severe low respiratory tract disease in infants and young children worldwide. Currently, there is not vaccine available for neither virus. In this work, we explored the differential expression of MUC by RSV and hMPV in human epithelial cells. Our data indicate that the MUC expression by RSV and hMPV differs significantly, as we observed a stronger induction of MUC8, MUC15, MUC20, MUC21, and MUC22 by RSV infection while the expression of MUC1, MUC2, and MUC5B was dominated by the infection with hMPV. These results may contribute to the different immune response induced by these two respiratory viruses.


Sign in / Sign up

Export Citation Format

Share Document