Abstract P748: Transcriptome Profiling of the Neural Stem Cell Niche and the Effect of Exercise in Restoring Neurogenesis in Type II Diabetic Mice

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Gratianne Rabiller ◽  
Atsushi Kanoke ◽  
Jialing Liu

Introduction: Previously we found that mice with type 2 diabetes (T2DM) exhibited an accelerated age-associated decline in neurogenesis during baseline and after ischemic stroke compared to age-matched control mice. The current study sought to delineate the transcriptome landscape involved in the impaired neurogenesis and determine if exercise can prevent the deleterious effect of T2DM on neural regeneration. Hypothesis: We hypothesize that T2DM alters signaling pathways regulating neurogenesis and daily exercise mitigates the deleterious effect on neurogenesis in the T2DM mice. Methods: Transcriptome profiling was performed by single cell RNA sequencing (scRNAseq) of SVZ and DG cells in stroke and non-stroke mice using the 10X Genomics platform. T2DM-induced differential gene expression was analyzed by ClusterProfiler and Wikipathways enrichment analysis. Middle-aged (~260 days old) and old (~700 days old) db/+ or db/db mice were subjected to daily wheel-running exercise for one month. BrdU at 50 mg/kg twice daily for 2 consecutive days was injected i.p. at the end of the experiment to track proliferating neuroprogenitor cells. DCX+ cells and BrDU+ cells were quantified in the dentate gyrus of the hippocampus. Results: The scRNAseq analysis revealed multiple cell types co-existing in the neurogenic niche. GO and Wikipathways enrichment analysis showed that under diabetic condition, genes such as Qdpr, Hsp90ab1, Hsp90aa1, and Sox9 were downregulated in pathways involving eNOS activation; whereas Junb, C1qc, C1qb and C1qa were upregulated in the pathways related to oxidative stress. Exercise, known to increase eNOS expression and reduce oxidative stress-induced cell death, significantly restored the number of DCX+ immature neurons in 8-months-old diabetic mice almost to the level of the control mice without exercise Conclusions: Exercise restores neurogenesis by increasing the number of neuroblasts in the middle-aged diabetic mice. Ongoing experiment will investigate whether exercise promotes neurogenesis by enhancing eNOS and improved blood flow, and inducing genes involved in the survival of the NSC niche of the diabetic mice.

2021 ◽  
Vol 12 ◽  
Author(s):  
Nicole C. Smith ◽  
Navaneethaiyer Umasuthan ◽  
Surendra Kumar ◽  
Nardos T. Woldemariam ◽  
Rune Andreassen ◽  
...  

The Atlantic salmon (Salmo salar) is an economically important fish, both in aquaculture and in the wild. In vertebrates, macrophages are some of the first cell types to respond to pathogen infection and disease. While macrophage biology has been characterized in mammals, less is known in fish. Our previous work identified changes in the morphology, phagocytic ability, and miRNA profile of Atlantic salmon adherent head kidney leukocytes (HKLs) from predominantly “monocyte-like” at Day 1 of in vitro culture to predominantly “macrophage-like” at Day 5 of culture. Therefore, to further characterize these two cell populations, we examined the mRNA transcriptome profile in Day 1 and Day 5 HKLs using a 44K oligonucleotide microarray. Large changes in the transcriptome were revealed, including changes in the expression of macrophage and immune-related transcripts (e.g. csf1r, arg1, tnfa, mx2), lipid-related transcripts (e.g. fasn, dhcr7, fabp6), and transcription factors involved in macrophage differentiation and function (e.g. klf2, klf9, irf7, irf8, stat1). The in silico target prediction analysis of differentially expressed genes (DEGs) using miRNAs known to change expression in Day 5 HKLs, followed by gene pathway enrichment analysis, supported that these miRNAs may be involved in macrophage maturation by targeting specific DEGs. Elucidating how immune cells, such as macrophages, develop and function is a key step in understanding the Atlantic salmon immune system. Overall, the results indicate that, without the addition of exogenous factors, the adherent HKL cell population differentiates in vitro to become macrophage-like.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Han Wu ◽  
Zhen-Qiang Sheng ◽  
Jun Xie ◽  
Ran Li ◽  
Liang Chen ◽  
...  

Myocardial fibrosis and inflammation are intricately linked in diabetic cardiomyopathy (DCM), and resveratrol has been shown to attenuate oxidative stress, inflammation, and fibrosis in several cell types or animal models. High mobility group box 1 (HMGB 1), a proinflammatory cytokine, has been reported to regulate fibrosis and inflammation in various organs. Then the present study aimed to reveal the expression of HMGB 1-mediated signaling pathway and oxidative stress in resveratrol-treated diabetic mice. The significant increase in serum HMGB 1 concentration in diabetic mice was attenuated by treatment with resveratrol. Similarly, western blot analysis revealed a significant increase of HMGB 1 protein in monocytes and heart tissues of diabetic mice, and resveratrol partly normalized the changes. In addition, resveratrol abrogated the increased expression of HMGB 1-mediated signaling pathway, oxidative stress, fibrosis, and inflammation in diabetic hearts. In conclusion, inhibition of HMGB 1-mediated signaling pathway and oxidative stress may contribute to resveratrol-induced anti-inflammatory and antifibrotic effects in DCM.


Author(s):  
Xin Shi ◽  
Li Zhang ◽  
Yi Li ◽  
Jieyuan Xue ◽  
Feng Liang ◽  
...  

Owing to the high mortality rates of heart failure (HF), a more detailed description of the HF becomes extremely urgent. Since the pathogenesis of HF remain elusive, a thorough identification of the genetic factors will provide novel insights into the molecular basis of this cardiac dysfunction. In our research, we performed publicly available transcriptome profiling datasets, including non-failure (NF), dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) hearts tissues. Through principal component analysis (PCA), gene differential expression analysis, gene set enrichment analysis (GSEA), and gene Set Variation Analysis (GSVA), we figured out the candidate genes noticeably altered in HF, the specific biomarkers of endothelial cell (EC) and cardiac fibrosis, then validated the differences of the inflammation-related cell adhesion molecules (CAMs), extracellular matrix (ECM) genes, and immune responses. Taken together, our results suggested the EC and fibroblast could be activated in response to HF. DCM and ICM had both commonality and specificity in the pathogenesis of HF. Higher inflammation in ICM might related to autocrine CCL3/CCL4-CCR5 interaction induced chemokine signaling activation. Furthermore, the activities of neutrophil and macrophage were higher in ICM than DCM. These findings identified features of the landscape of previously underestimated cellular, transcriptomic heterogeneity between ICM and DCM.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4210
Author(s):  
Yan Zhou ◽  
Chunxiu Zhou ◽  
Xutao Zhang ◽  
Chi Teng Vong ◽  
Yitao Wang ◽  
...  

Coptisine is the major bioactive protoberberine alkaloid found in Rhizoma Coptidis. Coptisine reduces inflammatory responses and improves glucose tolerance; nevertheless, whether coptisine has vasoprotective effect in diabetes is not fully characterized. Conduit arteries including aortas and carotid arteries were obtained from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) and coptisine. Some arterial rings were obtained from diabetic mice, which were induced by high-fat diet (45% kcal% fat) feeding for 6 weeks combined with a low-dose intraperitoneal injection of streptozotocin (120 mg/kg). Functional studies showed that coptisine protected endothelium-dependent relaxation in aortas against risk factors and from diabetic mice. Coptisine increased phosphorylations of AMPK and eNOS and downregulated the endoplasmic reticulum (ER) stress markers as determined by Western blotting. Coptisine elevates NO bioavailability and decreases reactive oxygen species level. The results indicate that coptisine improves vascular function in diabetes through suppression of ER stress and oxidative stress, implying the therapeutic potential of coptisine to treat diabetic vasculopathy.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 557
Author(s):  
Stephanie D. Burr ◽  
James A. Stewart

Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 345
Author(s):  
Hidemasa Bono

Data accumulation in public databases has resulted in extensive use of meta-analysis, a statistical analysis that combines the results of multiple studies. Oxidative stress occurs when there is an imbalance between free radical activity and antioxidant activity, which can be studied in insects by transcriptome analysis. This study aimed to apply a meta-analysis approach to evaluate insect oxidative transcriptomes using publicly available data. We collected oxidative stress response-related RNA sequencing (RNA-seq) data for a wide variety of insect species, mainly from public gene expression databases, by manual curation. Only RNA-seq data of Drosophila melanogaster were found and were systematically analyzed using a newly developed RNA-seq analysis workflow for species without a reference genome sequence. The results were evaluated by two metric methods to construct a reference dataset for oxidative stress response studies. Many genes were found to be downregulated under oxidative stress and related to organ system process (GO:0003008) and adherens junction organization (GO:0034332) by gene enrichment analysis. A cross-species analysis was also performed. RNA-seq data of Caenorhabditis elegans were curated, since no RNA-seq data of insect species are currently available in public databases. This method, including the workflow developed, represents a powerful tool for deciphering conserved networks in oxidative stress response.


Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 432-435
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Gabriela Esteves Duarte ◽  
José Antonio Visintin ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummaryLong-term heat stress (HS) induced by testicular insulation generates oxidative stress (OS) on the testicular environment; consequently activating antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx). The aim of this work was to immunolocalize antioxidant enzymes present in different cells within the seminiferous tubule when rams were submitted to HS. Rams were divided into control (n = 6) and treated group (n = 6), comprising rams subjected to testicular insulation for 240 h. After the testicular insulation period, rams were subjected to orchiectomy. Testicular fragments were submitted to immunohistochemistry for staining against SOD, GR and GPx enzymes. We observed immunolocalization of GPx in more cell types of the testis after HS and when compared with other enzymes. In conclusion, GPx is the main antioxidant enzyme identified in testicular cells in an attempt to maintain oxidative balance when HS occurs.


Sign in / Sign up

Export Citation Format

Share Document