Object Activation in Semantic Memory from Visual Multimodal Feature Input

2002 ◽  
Vol 14 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Michael A. Kraut ◽  
Sarah Kremen ◽  
Lauren R. Moo ◽  
Jessica B. Segal ◽  
Vincent Calhoun ◽  
...  

The human brain's representation of objects has been proposed to exist as a network of coactivated neural regions present in multiple cognitive systems. However, it is not known if there is a region specific to the process of activating an integrated object representation in semantic memory from multimodal feature stimuli (e.g., picture–word). A previous study using word–word feature pairs as stimulus input showed that the left thalamus is integrally involved in object activation (Kraut, Kremen, Segal, et al., this issue). In the present study, participants were presented picture–word pairs that are features of objects, with the task being to decide if together they “activated” an object not explicitly presented (e.g., picture of a candle and the word “icing” activate the internal representation of a “cake”). For picture–word pairs that combine to elicit an object, signal change was detected in the ventral temporo-occipital regions, pre-SMA, left primary somatomotor cortex, both caudate nuclei, and the dorsal thalami bilaterally. These findings suggest that the left thalamus is engaged for either picture or word stimuli, but the right thalamus appears to be involved when picture stimuli are also presented with words in semantic object activation tasks. The somatomotor signal changes are likely secondary to activation of the semantic object representations from multimodal visual stimuli.

Author(s):  
Elise L. Radtke ◽  
Ulla Martens ◽  
Thomas Gruber

AbstractWe applied high-density EEG to examine steady-state visual evoked potentials (SSVEPs) during a perceptual/semantic stimulus repetition design. SSVEPs are evoked oscillatory cortical responses at the same frequency as visual stimuli flickered at this frequency. In repetition designs, stimuli are presented twice with the repetition being task irrelevant. The cortical processing of the second stimulus is commonly characterized by decreased neuronal activity (repetition suppression). The behavioral consequences of stimulus repetition were examined in a companion reaction time pre-study using the same experimental design as the EEG study. During the first presentation of a stimulus, we confronted participants with drawings of familiar object images or object words, respectively. The second stimulus was either a repetition of the same object image (perceptual repetition; PR) or an image depicting the word presented during the first presentation (semantic repetition; SR)—all flickered at 15 Hz to elicit SSVEPs. The behavioral study revealed priming effects in both experimental conditions (PR and SR). In the EEG, PR was associated with repetition suppression of SSVEP amplitudes at left occipital and repetition enhancement at left temporal electrodes. In contrast, SR was associated with SSVEP suppression at left occipital and central electrodes originating in bilateral postcentral and occipital gyri, right middle frontal and right temporal gyrus. The conclusion of the presented study is twofold. First, SSVEP amplitudes do not only index perceptual aspects of incoming sensory information but also semantic aspects of cortical object representation. Second, our electrophysiological findings can be interpreted as neuronal underpinnings of perceptual and semantic priming.


2013 ◽  
Vol 110 (4) ◽  
pp. 984-998 ◽  
Author(s):  
Wilsaan M. Joiner ◽  
Jordan B. Brayanov ◽  
Maurice A. Smith

The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching. After adaptation to velocity-dependent dynamics in the right arm, we estimated the amount of adaptation transferred to the left arm, using error-clamp measurement trials to directly measure changes in learned dynamics. We found that a small but significant amount of generalization to the untrained arm occurs under three different training schedules: a short-duration (15 trials) abrupt presentation, a long-duration (160 trials) abrupt presentation, and a long-duration gradual presentation of the novel dynamic environment. Remarkably, we found essentially no difference between the amount of interlimb generalization when comparing these schedules, with 9–12% transfer of the trained adaptation for all three. However, the duration of training had a pronounced effect on the stability of the interlimb transfer: The transfer elicited from short-duration training decayed rapidly, whereas the transfer from both long-duration training schedules was considerably more persistent (<50% vs. >90% retention over the first 20 trials). These results indicate that the amount of interlimb transfer is similar for gradual versus abrupt training and that interlimb transfer of learned dynamics can occur after even a brief training period but longer training is required for an enduring effect.


2016 ◽  
Vol 13 (1) ◽  
pp. 139-157 ◽  
Author(s):  
Kim M. Williams ◽  
Lonnie Hannon

AbstractIn 2010, the Alabama GOP took control of the state legislature for the first time since Reconstruction. The next year, in a sharply partisan vote, the legislature passed, and Governor Robert Bentley (R) signed into law, the Beason-Hammon Alabama Taxpayer and Citizen Protection Act, also known as House Bill 56, the harshest immigration law in the country. This punitive state law was the impetus for Black elites in Birmingham to frame the immigration debate as a matter of civil rights and thus to see the issue in a new light. When Alabama Republicans moved to the Right on immigration, Black leaders in Birmingham moved Left. In this study, backed up by an event analysis of local newspapers, an analysis of interviews with members of the Black elite in Birmingham in 2013, who were previously interviewed in 2007, helps to substantiate this claim. In the summer of 2007, against the backdrop of an immigration debate in Washington, our Black elite study participants largely told us they had no stake in immigration. By 2013, many were willing to fight for immigrant rights at the highest level.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mikhail Votinov ◽  
Artem Myznikov ◽  
Maya Zheltyakova ◽  
Ruslan Masharipov ◽  
Alexander Korotkov ◽  
...  

The organization of socio-cognitive processes is a multifaceted problem for which many sophisticated concepts have been proposed. One of these concepts is social intelligence (SI), i.e., the set of abilities that allow successful interaction with other people. The theory of mind (ToM) human brain network is a good candidate for the neural substrate underlying SI since it is involved in inferring the mental states of others and ourselves and predicting or explaining others’ actions. However, the relationship of ToM to SI remains poorly explored. Our recent research revealed an association between the gray matter volume of the caudate nucleus and the degree of SI as measured by the Guilford-Sullivan test. It led us to question whether this structural peculiarity is reflected in changes to the integration of the caudate with other areas of the brain associated with socio-cognitive processes, including the ToM system. We conducted seed-based functional connectivity (FC) analysis of resting-state fMRI data for 42 subjects with the caudate as a region of interest. We found that the scores of the Guilford-Sullivan test were positively correlated with the FC between seeds in the right caudate head and two clusters located within the right superior temporal gyrus and bilateral precuneus. Both regions are known to be nodes of the ToM network. Thus, the current study demonstrates that the SI level is associated with the degree of functional integration between the ToM network and the caudate nuclei.


Author(s):  
L. Kannan ◽  
Praveena P.

Background: Stress is a mental, physical and emotional response to life demands. Long hours of work, client demands, changing laws- creates stress and eventually hypertension among advocates. Well-being of the advocates are being questioned. Hence the main objective of the study is to evaluate the relationship between stress and hypertension among practising advocates.Methods: A cross-sectional study was conducted in a sample of 300 practising advocates at Madurai district court for a period of 1 year by simple random sampling method.Results: Around 133 (44.33%) and 167 (55.66%) of study participants were in level of high stress and low stress respectively. Among high stressed participants, a majority of 113 (84.96%) were found to be hypertensives and among the low stressed participants only 10 (5.98%) were hypertensives. The difference of observation was found to be statistically significant (p=0.0000).Conclusions: In conclusion the study explains that practising advocates with high perceived stress 113 (84.96%) were found to be hypertensives. Stress has a significant association with hypertension. The right way to manage stress is to implement coping strategies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniele Gatti ◽  
Floris Van Vugt ◽  
Tomaso Vecchi

Abstract Mounting evidence suggests that the cerebellum, a structure previously linked to motor function, is also involved in a wide range of non-motor processes. It has been proposed that the cerebellum performs the same computational processes in both motor and non-motor domains. Within motor functions, the cerebellum is involved in the integration of signals from multiple systems. Here we hypothesized that cerebellum may be involved in integration within semantic memory as well. Specifically, understanding a noun-adjective combination (e.g. red apple) requires combining the meaning of the adjective (red) with the meaning of the noun (apple). In two experiments, participants were asked to judge whether noun-adjective word-pairs were semantically related (e.g., red apple) or not (e.g., lucky milk) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site (vertex in Experiment 1 and visual cortex in Experiment 2). Cerebellar TMS caused a decrease in participants’ accuracy for related word-pairs while accuracy for unrelated stimuli was not affected. A third experiment using a control task where subjects compared pairs of random letters showed no effect of TMS. Taken together these results indicate that the right cerebellum is involved specifically in the processing of semantically related stimuli. These results are consistent with theories that proposed the existence of a unified cerebellar function within motor and non-motor domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive cognition.


2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0002 ◽  
Author(s):  
Jed A. Diekfuss ◽  
Dustin R. Grooms ◽  
Kim Barber Foss ◽  
Scott Bonnette ◽  
Chris Dicesare ◽  
...  

Background: Anterior cruciate ligament (ACL) injury is associated with alterations in the central nervous system and resultant sensorimotor control (Courtney et al., 2005; Grooms et al., 2017). Our prospective data indicates that altered knee-motor functional brain connectivity is associated with increased risk for ACL injury (Diekfuss et al., revisions invited), revealing novel neural targets for neuromuscular training interventions. Specifically, interventions that integrate concomitant sensorimotor feedback with injury prevention techniques have the potential to enhance brain functional connectivity to optimize ACL injury risk reduction strategies. To deliver concomitant sensorimotor feedback, we have developed an augmented neuromuscular training (aNMT) system that utilizes interactive, real-time biofeedback to simultaneously target multiple biomechanical variables associated with ACL injury risk (Bonnette et al., in press; Figure 1A). aNMT calculates and maps key biomechanical parameters to an interactive graphical shape that responds in real time as a function of participants’ movements. Participants are instructed to perform exercises to achieve a goal shape, which equates to producing biomechanical parameters associated with ACL injury risk reduction, while deviations toward injury risk factors result in specific shape distortions. We hypothesized that aNMT would significantly improve biomechanics associated with ACL injury risk and also increase knee-motor functional connectivity. We further predicted that the identified connectivity changes would be associated with the hypothesized changes in biomechanics. Methods: Over six weeks of training, participants (n = 25) performed a series of aNMT-based progressive exercises (e.g., squat, overhead squat, squat jump, tuck jump, single-leg Romanian dead lift, pistol squat) and completed a drop vertical jump (DVJ) task while fully instrumented for 3D motion analysis pre- and post-training. Peak knee abduction moment (pKAM; bilateral average) from the DVJ was used as the biomechanical outcome variable. Resting-state functional magnetic resonance imaging (fMRI) scans were also collected pre- and post-training on a subset of the cohort (n = 17). Thirteen additional participants were recruited to serve as untrained controls and completed the DVJ and resting-state fMRI on two testing sessions separated by approximately 6 weeks. Twenty-five knee-motor regions of interest (ROIs) were created based on the areas of brain activation derived from previously published data (Grooms et al., 2015; Kapreli et al., 2007). Paired-samples t tests with a false discovery rate correction for multiple comparisons determined differences in functional connectivity among these 25 ROIs (post > pre). Fisher-transformed Pearson correlation coefficients between the average residual blood oxygen level dependent (BOLD) signal time series extracted from ROIs that demonstrated significant group level changes were associated with pKAM in DVJ task at pre- and post-training. The pre- and post-training Pearson correlation coefficients were subsequently compared using the cocor package (Diedenhofen & Musch, 2015) to determine if the two relationships were significantly different. Results: Results showed that pKAM in the aNMT group was significantly lower following aNMT (p < .05), while no significant changes were found between the two time points for controls (p > .05). Results also revealed significantly greater functional connectivity between the right supplementary motor area (SMA) and the left thalamus at post-training relative to pre-training for the aNMT group, t(16) = 3.37, p = .04 (Figure 1B). No significant differences between the two time points were observed for the controls (all p > .05). The association between pKAM and the right SMA and left thalamus at pre-training (r = -.22; Figure 1C) was significantly different compared to that at post-training (r = .26; Figure 1D), p < .05, with a positive relationship between pKAM and SMA and thalamus activation following aNMT biofeedback. No similar changes in pKAM and right SMA and left thalamus connectivity were observed for the untrained controls, p > .05. Conclusions/Significance: The right SMA is involved in the planning and coordination of movement, and the left thalamus is associated with neuromotor control. The increased functional connectivity between these regions, combined with the reduction in pKAM, which is associated with reduced risk of ACL injury, indicate a possible neural mechanism for improved motor adaption associated with aNMT biofeedback. These findings have distinct implications for ACL injury prevention strategies. Biofeedback tools such as aNMT can be designed to target specifically the neural drivers of aberrant movement biomechanics underlying increased ACL injury risk. [Figure: see text]


2008 ◽  
Vol 39 (5) ◽  
pp. 793-800 ◽  
Author(s):  
S. E. Chua ◽  
Y. Deng ◽  
E. Y. H. Chen ◽  
C. W. Law ◽  
C. P. Y. Chiu ◽  
...  

BackgroundWe and others have reported that patients experiencing their first episode of psychosis already have significant structural brain abnormalities. Antipsychotics seem to reverse subcortical volume deficits after months of treatment. However, the early impact of medication on brain morphology is not known.MethodForty-eight individuals in their first episode of psychosis underwent magnetic resonance imaging (MRI) brain scanning. Twenty-six were antipsychotic naive and 22 were newly treated with antipsychotic medication for a median period of 3 weeks. In each group, 80% of subjects received a diagnosis of schizophrenia. The two groups were balanced for age, sex, handedness, ethnicity, height, years of education, paternal socio-economic status (SES) and Positive and Negative Syndrome Scale (PANSS) score. Group differences in whole-brain grey matter were compared voxel by voxel, using Brain Activation and Morphological Mapping (BAMM) software. We also conducted testing of group differences with region-of-interest (ROI) measurements of the caudate nucleus.ResultsRelative to the untreated group, those receiving antipsychotic medication for 3–4 weeks had significantly greater grey-matter volumes in the bilateral caudate and cingulate gyri, extending to the left medial frontal gyrus. ROI analysis confirmed that, in treated patients, the right and left caudate nuclei were significantly larger by 10% (p<0.039, two-tailed) and 9% (p<0.048, two-tailed) respectively.ConclusionsEarly striatal grey-matter enlargement may occur within the first 3–4 weeks of antipsychotic treatment. Possible reasons for putative striatal hypertrophy and its implications are discussed.


Author(s):  
Timothy P. Barrette ◽  
Adam M. Pike

Raised retroreflective pavement markers (RRPMs) are commonly used to provide nighttime delineation of roadways. Although RRPMs are visible during dry conditions, they provide their greatest benefit during wet-night conditions, when typical pavement markings become flooded and lose their retroreflectivite properties. Naturally, the retroreflectivity of RRPMs degrades over time as a result of traffic, ultraviolet light, precipitation, and roadway maintenance activities. Subsequently, it is necessary to examine the relationship between driver performance and the condition of the RRPMs. To assess visibility relative to RRPM condition, study participants rode in the passenger seat of a vehicle operated by a member of the research team, traveling at approximately 15 mph, for two laps around a closed course. Throughout each lap of the course, nine treatments consisting of RRPMs or preformed pavement marking tape of various retroreflectivity levels diverged from a center line to either the right or left. Participants indicated when they could tell which direction the treatment diverged, which was recorded using a GPS unit. A generalized linear model was estimated on a dataset constructed by pairing the observed distances from various treatments with demographic information about each participant. The analysis indicates the distance at which a particular treatment would be visible, which can then be converted to preview time to assess treatment adequacy for a variety of speeds. The RRPM treatments generally provided adequate preview time for older drivers based on the extant literature; however, the preformed pavement marking tape was less adequate at higher speeds and under overhead lighting.


2009 ◽  
Vol 102 (1) ◽  
pp. 556-567 ◽  
Author(s):  
Muneyoshi Takahashi ◽  
Johan Lauwereyns ◽  
Yoshio Sakurai ◽  
Minoru Tsukada

The classical notion of hippocampal CA1 “place cells,” whose activity tracks physical locations, has undergone substantial revision in recent years. Here, we provide further evidence of an abstract spatial code in hippocampal CA1, which relies on memory and adds complexity to the basic “place cell.” Using a nose-poking paradigm with four male Wistar rats, we specifically concentrated on activity during fixation, when the rat was immobile and waiting for the next task event in a memory-guided spatial alternation task. The rat had to alternate between choosing the right and left holes on a trial-by-trial basis, without any sensory cue, and relying on an internal representation of the sequence of trials. Twelve tetrodes were chronically implanted for single-unit recording in the right CA1 of each rat. We focus on 76 single neurons that showed significant activation during the fixation period compared with baseline activity between trials. Among these 76 fixation neurons, we observed 38 neurons that systematically changed their fixation activity as a function of the alternation sequence. That is, even though these rats were immobile during the fixation period, the neurons fired differently for trials in which the next spatial choice should be left (i.e., RIGHT-TO-LEFT trials) compared with trials in which the next spatial choice should be right (i.e., LEFT-TO-RIGHT trials), or vice versa. Our results imply that these neurons maintain a sequential code of the required spatial response during the alternation task and thus provide abstract information, derived from memory, that can be used for efficient navigation.


Sign in / Sign up

Export Citation Format

Share Document