Growth of Carbon Nanotubes on Fully Processed Silicon-On-Insulator CMOS Substrates

2008 ◽  
Vol 8 (11) ◽  
pp. 5667-5672 ◽  
Author(s):  
M. Samiul Haque ◽  
S. Zeeshan Ali ◽  
P. K. Guha ◽  
S. P. Oei ◽  
J. Park ◽  
...  

This paper describes the growth of Carbon Nanotubes (CNTs) both aligned and non-aligned on fully processed CMOS substrates containing high temperature tungsten metallization. While the growth method has been demonstrated in fabricating CNT gas sensitive layers for high temperatures SOI CMOS sensors, it can be employed in a variety of applications which require the use of CNTs or other nanomaterials with CMOS electronics. In our experiments we have grown CNTs both on SOI CMOS substrates and SOI CMOS microhotplates (suspended on membranes formed by post-CMOS deep RIE etching). The fully processed SOI substrates contain CMOS devices and circuits and additionally, some wafers contained high current LDMOSFETs and bipolar structures such as Lateral Insulated Gate Bipolar Transistors. All these devices were used as test structures to investigate the effect of additional post-CMOS processing such as CNT growth, membrane formation, high temperature annealing, etc. Electrical characterisation of the devices with CNTs were performed along with SEM and Raman spectroscopy. The CNTs were grown both at low and high temperatures, the former being compatible with Aluminium metallization while the latter being possible through the use of the high temperature CMOS metallization (Tungsten). In both cases we have found that there is no change in the electrical behaviour of the CMOS devices, circuits or the high current devices. A slight degradation of the thermal performance of the CMOS microhotplates was observed due to the extra heat dissipation path created by the CNT layers, but this is expected as CNTs exhibit a high thermal conductance. In addition we also observed that in the case of high temperature CNT growth a slight degradation in the manufacturing yield was observed. This is especially the case where large area membranes with a diameter in excess of 500 microns are used.

Author(s):  
P. Roitman ◽  
B. Cordts ◽  
S. Visitserngtrakul ◽  
S.J. Krause

Synthesis of a thin, buried dielectric layer to form a silicon-on-insulator (SOI) material by high dose oxygen implantation (SIMOX – Separation by IMplanted Oxygen) is becoming an important technology due to the advent of high current (200 mA) oxygen implanters. Recently, reductions in defect densities from 109 cm−2 down to 107 cm−2 or less have been reported. They were achieved with a final high temperature annealing step (1300°C – 1400°C) in conjunction with: a) high temperature implantation or; b) channeling implantation or; c) multiple cycle implantation. However, the processes and conditions for reduction and elimination of precipitates and defects during high temperature annealing are not well understood. In this work we have studied the effect of annealing temperature on defect and precipitate reduction for SIMOX samples which were processed first with high temperature, high current implantation followed by high temperature annealing.


2021 ◽  
Author(s):  
Houfu Song ◽  
Fang Liu ◽  
Song Hu ◽  
Qinshu Li ◽  
Susu Yang ◽  
...  

Abstract Understanding thermal transport across metal/semiconductor interfaces is crucial for heat dissipation of electronics The dominant heat carriers in non-metals, phonons, transport elastically across most interfaces, except for a few extreme cases where the two materials that formed the interface are highly dissimilar with a large difference in Debye temperature. In this work we show that even for two materials with similar Debye temperatures (Al/Si, Al/GaN), a substantial portion of phonons will transport inelastically across their interfaces at high temperatures, significantly enhancing interface thermal conductance. Moreover, we find that interface roughness strongly affects phonon transport process. For atomically sharp interfaces, phonons are allowed to transport inelastically and interface thermal conductance linearly increases at high temperatures. With increasing interface roughness, inelastic phonon transport rapidly diminishes. Our results provide new insights on phonon transport across interfaces and open up opportunities to engineering interface thermal conductance specifically for materials of relevance to microelectronics.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000227-000232
Author(s):  
K. Grella ◽  
S. Dreiner ◽  
A. Schmidt ◽  
W. Heiermann ◽  
H. Kappert ◽  
...  

Standard Bulk-CMOS-technology targets use-temperatures of not more than 175 °C. Silicon-on-Insulator-technologies are commonly used up to 250 °C. In this work we evaluate the limit for electronic circuit function realized in thin film SOI-technologies for even higher temperatures. At Fraunhofer IMS a versatile 1.0 μm SOI-CMOS process based on 200 mm wafers is available. It features three layers of tungsten metalization with excellent reliability concerning electromigration, voltage independent capacitors, various resistors, and single-poly-EEPROMs. We present a study of the temperature dependence of MOSFETs and basic circuits produced in this process. The electrical characteristics of NMOSFET- and PMOSFET-transistors were studied up to 450 °C. In a second step we investigated the functionality of ring oscillators, representing digital circuits, and bandgap references as examples of simple analog components. The frequency and the current consumption of ring oscillators and the output voltage of bandgap references were also characterized up to 450 °C. We found that the ring oscillator still functions at this high temperature with a frequency of about one third of the value at room temperature. The output voltage of the bandgap reference is in the specified range up to 250 °C. The deviations above this temperature are analyzed and measures to improve the circuit are discussed. The acquired data provide an important foundation to extend the application of CMOS-technology to its real maximum temperature limits.


2013 ◽  
Vol 10 (2) ◽  
pp. 67-72 ◽  
Author(s):  
K. Grella ◽  
S. Dreiner ◽  
A. Schmidt ◽  
W. Heiermann ◽  
H. Kappert ◽  
...  

Standard bulk CMOS technology targets operating temperatures of not more than 175°C. Silicon-on-insulator technologies are commonly used up to 250°C. In this work, we evaluate the limit for electronic circuit function realized in thin film SOI technologies for even higher temperatures. At Fraunhofer IMS, a versatile 1.0 μm SOI-CMOS process based on 200 mm wafers is available. It features three layers of tungsten metallization with excellent reliability concerning electromigration, as well as voltage-independent capacitors, various resistors, and single-poly-EEPROMs. We present a study of the temperature dependence of MOSFETs and basic circuits produced in this process. The electrical characteristics of an NMOSFET transistor and a PMOSFET transistor are studied up to 450°C. In a second step, we investigate the functionality of a ring oscillator (representing a digital circuit) and a band gap reference as an example of a simple analog component. The frequency and the current consumption of the ring oscillator, as well as the output voltage and the current of the band gap reference, are characterized up to 450°C. We find that the ring oscillator still oscillates at this high temperature with a frequency of about one third of the value at room temperature. The output voltage of the band gap reference is in the specified range (change < 3%) up to 250°C. The deviations above this temperature are analyzed and measures to improve the circuit are discussed. The acquired data provide an important foundation to extend the application of CMOS technology to its real maximum temperature limits.


To solve the problems of high temperature microelectronics the influence of the self heating effect on the IV dates partially depleted submicron silicon–on-insulator CMOS transistor in the ambient temperature range from 525 K to 650 K is discussed. Approach consists in combination of experimental data and of computational simulating results. For simulation of electrothermal characteristics of SOI CMOS transistor is considered three-layered structure. Temperature distribution is calculated numerically using iterative algorithm in conjunction with software COMSOL Multiphysics. I-V dates of SOI CMOS transistors are calculated by means of two-dimensional models for n-and p-channel transistors of Sentaurus TCAD developed in the system of instrument and technological modelling. TCAD models are calibrated on experimental characteristics for 525 K. It is shown that with growth of ambient temperature the selfheating mechanism contribution consistently decreases. By results of modeling it is established that self-heating contributions at supply voltages 5.5 V to decreases for ntransistor in 2.8 times, p-transistor in 2.2 times. The relative decline of current n-type transistor for reduced from 11.6% to 5.5% and for p-type with 15% to 9%. However, different dynamics of current recession for n-and p-transistors is significant for analog applications that need to be considered at high-temperature circuit design. The proposed methodology allows to critically assess the contribution of the self-heating mechanism on the I-V dates for a wide range of high temperatures and supply voltages. Underestimating this fact leads to unreasonable values for the maximum temperature and limit of thermal stability for the separate SOI CMOS transistor. In total this can be a prerequisite for a significant simplification of the design of not only the chip construction but also the whole electronic Board.


2017 ◽  
Vol 2017 (HiTEN) ◽  
pp. 000234-000237
Author(s):  
Alex Pike ◽  
Adrien Corne ◽  
Frank Bohac ◽  
Ravi Ananth

Abstract Two different reference generator circuits were designed, fabricated and tested, on the same silicon die using a 1.0μ CMOS SOI process that is suitable for operation at high temperatures. One of the reference generators was a traditional bandgap circuit. The other was a more novel current-mode reference that can notionally generate any output voltage. Testing was performed over a wide temperature range from −50°C to 220°C with a supply variation of 4V to 6V.


2010 ◽  
Vol 645-648 ◽  
pp. 1123-1126 ◽  
Author(s):  
Kevin Matocha ◽  
Peter A. Losee ◽  
Arun Gowda ◽  
Eladio Delgado ◽  
Greg Dunne ◽  
...  

We address the two critical challenges that currently limit the applicability of SiC MOSFETs in commercial power conversion systems: high-temperature gate oxide reliability and high total current rating. We demonstrate SiC MOSFETs with predicted gate oxide reliability of >106 hours (100 years) operating at a gate oxide electric field of 4 MV/cm at 250°C. To scale to high total currents, we develop the Power Overlay planar packaging technique to demonstrate SiC MOSFET power modules with total on-resistance as low as 7.5 m. We scale single die SiC MOSFETs to high currents, demonstrating a large area SiC MOSFET (4.5mm x 4.5 mm) with a total on-resistance of 30 m, specific on-resistance of 5 m-cm2 and blocking voltage of 1400V.


2012 ◽  
Vol 184 ◽  
pp. 265-270 ◽  
Author(s):  
Mehdi Mazaheri ◽  
Daniele Mari ◽  
Robert Schaller ◽  
Gilbert Fantozzi

Composites containing 3 mol% yttria stabilized tetragonal zirconia (3Y-TZP) reinforced with multiwalled carbon nanotubes (CNTs) with various amounts of CNTs (3Y-TZP / X wt% CNT, X= 0, 0.5, 1.5, 3 and 5) were processed by spark plasma sintering. Microscopic analysis proves that CNTs were well dispersed and embedded in grain boundaries of the sintered body. High temperature mechanical properties have been investigated using mechanical spectroscopy and low stress (6 MPa) creep. The isothermal spectrum (measured at 1600 K) consists of a mechanical loss peak at a frequency of about 0.1 Hz, which is superimposed on an exponential increase at low frequency. The absence of a well-marked peak in monolithic 3Y-TZP is justified considering that restoring force decreases at low frequencies or high temperatures due to the elasticity of neighboring grains. Therefore, strain is no more restricted and the mechanical loss increases exponentially, which is correlated to macroscopic creep. However, with CNT additions the mechanical loss decreases and a better resolved peak was observed. In parallel, the results have shown that the creep rate drastically decreases with CNT additions. These results can be interpreted by the pinning effect of CNTs which can hinder grain boundary sliding at high temperatures, resulting in a creep resistance improvement.


Sign in / Sign up

Export Citation Format

Share Document