scholarly journals Response of Water Vapor and CO2 Fluxes in Semiarid Lands to Seasonal and Intermittent Precipitation Pulses

2006 ◽  
Vol 7 (5) ◽  
pp. 995-1010 ◽  
Author(s):  
Sasha Ivans ◽  
Lawrence Hipps ◽  
A. Joshua Leffler ◽  
Carolyn Y. Ivans

Abstract Precipitation pulses are important in controlling ecological processes in semiarid ecosystems. The effects of seasonal and intermittent precipitation events on net water vapor and CO2 fluxes were determined for crested wheatgrass (Agropyron desertorum), juniper (Juniperus osteosperma), and sagebrush (Artemisia tridentata) ecosystems using eddy covariance measurements. The measurements were made at Rush Valley, Utah, in the northern Great Basin of the United States. Data were evaluated during the growing seasons of 2002 and 2003. Each of these communities responds to precipitation pulses in all seasons, but these responses vary among season and ecosystem, and differ for water vapor and CO2. The degree and direction of response (i.e., net uptake or efflux) depended upon the timing and amount of precipitation. In early spring, both evapotranspiration (ET) and CO2 fluxes responded only slightly to precipitation pulses because soils were already moist from snowmelt and spring rains. As soils dried later in the spring, ET response to rainfall increased. The summer season was very warm and dry in both years, and both water and CO2 fluxes were generally reduced as compared to fluxes in the spring. Water vapor fluxes increased during and immediately after periodic summer rain events at all sites, especially at juniper, followed by the sagebrush and crested wheatgrass sites. Net CO2 exchange changed significantly at the juniper and sagebrush sites but changed very little at the crested wheatgrass site due to senescence of this grass. However, in the wetter summer of 2003, the grass species maintained physiological activity and responded to rain events. In the fall of both years, responses of ET and CO2 fluxes to precipitation were very similar for all three communities, with only small changes, presumably due to significantly lower temperatures in the fall. This research documents the importance of the temporal distribution of rainfall on patterns of ET and CO2 fluxes and suggests that soil moisture and stand-level leaf area index (LAI) are critical factors governing ET and CO2 responses to precipitation in these communities.

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 505
Author(s):  
Gregoriy Kaplan ◽  
Offer Rozenstein

Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.


2016 ◽  
Vol 106 (4) ◽  
pp. 362-371 ◽  
Author(s):  
P. Cheng ◽  
X. M. Chen ◽  
D. R. See

Puccinia striiformis causes stripe rust on cereal crops and many grass species. However, it is not clear whether the stripe rust populations on grasses are able to infect cereal crops and how closely they are related to each other. In this study, 103 isolates collected from wheat, barley, triticale, rye, and grasses in the United States were characterized by virulence tests and simple sequence repeat (SSR) markers. Of 69 pathotypes identified, 41 were virulent on some differentials of wheat only, 10 were virulent on some differentials of barley only, and 18 were virulent on some differentials of both wheat and barley. These pathotypes were clustered into three groups: group one containing isolates from wheat, triticale, rye, and grasses; group two isolates were from barley and grasses; and group three isolates were from grasses and wheat. SSR markers identified 44 multilocus genotypes (MLGs) and clustered them into three major molecular groups (MG) with MLGs in MG3 further classified into three subgroups. Isolates from cereal crops were present in one or more of the major or subgroups, but not all, whereas grass isolates were present in all of the major and subgroups. The results indicate that grasses harbor more diverse isolates of P. striiformis than the cereals.


2017 ◽  
Vol 10 (6) ◽  
pp. 2253-2269 ◽  
Author(s):  
Andrew A. Turnipseed ◽  
Peter C. Andersen ◽  
Craig J. Williford ◽  
Christine A. Ennis ◽  
John W. Birks

Abstract. A new solid-phase scrubber for use in conventional ozone (O3) photometers was investigated as a means of reducing interferences from other UV-absorbing species and water vapor. It was found that when heated to 100–130 °C, a tubular graphite scrubber efficiently removed up to 500 ppb ozone and ozone monitors using the heated graphite scrubber were found to be less susceptible to interferences from water vapor, mercury vapor, and aromatic volatile organic compounds (VOCs) compared to conventional metal oxide scrubbers. Ambient measurements from a graphite scrubber-equipped photometer and a co-located Federal equivalent method (FEM) ozone analyzer showed excellent agreement over 38 days of measurements and indicated no loss in the scrubber's ability to remove ozone when operated at 130 °C. The use of a heated graphite scrubber was found to reduce the interference from mercury vapor to ≤ 3 % of that obtained using a packed-bed Hopcalite scrubber. For a series of substituted aromatic compounds (ranging in volatility and absorption cross section at 253.7 nm), the graphite scrubber was observed to consistently exhibit reduced levels of interference, typically by factors of 2.5 to 20 less than with Hopcalite. Conventional solid-phase scrubbers also exhibited complex VOC adsorption and desorption characteristics that were dependent upon the relative humidity (RH), volatility of the VOC, and the available surface area of the scrubber. This complex behavior involving humidity is avoided by use of a heated graphite scrubber. These results suggest that heated graphite scrubbers could be substituted in most ozone photometers as a means of reducing interferences from other UV-absorbing species found in the atmosphere. This could be particularly important in ozone monitoring for compliance with the United States (U.S.) Clean Air Act or for use in VOC-rich environments such as in smog chambers and monitoring indoor air quality.


2017 ◽  
Vol 122 (17) ◽  
pp. 9529-9554 ◽  
Author(s):  
Jessica B. Smith ◽  
David M. Wilmouth ◽  
Kristopher M. Bedka ◽  
Kenneth P. Bowman ◽  
Cameron R. Homeyer ◽  
...  

Author(s):  
Cássia B. Machado ◽  
José R. de S. Lima ◽  
Antonio C. D. Antonino ◽  
Eduardo S. de Souza ◽  
Rodolfo M. S. Souza ◽  
...  

ABSTRACT Studies that investigate the relationships between CO2 fluxes and evapotranspiration (ET) are important for predicting how agricultural ecosystems will respond to climate changes. However, none was made on the maize-grass intercropping system in Brazil. The aim of this study was to determine the ET and CO2 fluxes in a signal grass pasture intercropped with maize, in São João, Pernambuco, Brazil, in a drought year. Furthermore, the soil water storage (SWS) and leaf area index (LAI) were determined. The latent heat flux was the main consumer of the available energy and the daily and seasonal ET and CO2 variations were mainly controlled by rainfall, through the changes in soil water content and consequently in SWS. The agroecosystem acted as an atmospheric carbon source, during drier periods and lower LAI, and as an atmospheric carbon sink, during wetter periods and higher LAI values. In a dry year, the intercropping sequestered 2.9 t C ha-1, which was equivalent to 8.0 kg C ha-1 d-1. This study showed strong seasonal fluctuations in maize-grass intercropping CO2 fluxes, due to seasonality of rainfall, and that this agroecosystem is vulnerable to low SWS, with significant reduction in CO2 uptake during these periods.


2009 ◽  
Vol 6 (12) ◽  
pp. 2879-2893 ◽  
Author(s):  
Y. Fu ◽  
Z. Zheng ◽  
G. Yu ◽  
Z. Hu ◽  
X. Sun ◽  
...  

Abstract. This study compared carbon dioxide (CO2) fluxes over three grassland ecosystems in China, including a temperate semiarid steppe in Inner Mongolia (NMG), an alpine shrub-meadow in Qinghai (HB), and an alpine meadow-steppe in Tibet (DX). Measurements were made in 2004 and 2005 using the eddy covariance technique. Objectives were to document the seasonality of the net ecosystem exchange of CO2 (NEE) and its components, gross ecosystem photosynthesis (GEP), and ecosystem respiration (Reco), and to examine how environmental factors affect the CO2 exchange in these grassland ecosystems. The 2005 growing season (from May to September) was warmer than that of 2004 across the three sites, and precipitation in 2005 was less than that in 2004 at NMG and DX. The magnitude of CO2 fluxes (daily and annual sums) was largest at HB, which also showed the highest temperature sensitivity of Reco among the three sites. A stepwise multiple regression analysis showed that the seasonal variation of GEP, Reco, and NEE of the alpine shrub-meadow was mainly controlled by air temperature, whereas leaf area index can likely explain the seasonal variation in GEP, Reco, and NEE of the temperate steppe. The CO2 fluxes of the alpine meadow-steppe were jointly affected by soil moisture and air temperature. The alpine shrub-meadow acted as a net carbon sink over the two study years, whereas the temperate steppe and alpine meadow-steppe acted as net carbon sources. Both GEP and Reco were reduced by the summer and spring drought in 2005 at NMG and DX, respectively. The accumulated leaf area index during the growing season (LAIsum) played a key role in the interannual and intersite variation of annual GEP and Reco across the study sites and years, whereas soil moisture contributed most significantly to the variation in annual NEE. Because LAIsum was significantly correlated with soil moisture at a depth of 20 cm, we concluded that the available soil moisture other than annual precipitation was the most important factor controlling the variation in the CO2 budgets of different grassland ecosystems in China.


2017 ◽  
Author(s):  
Minseok Kang ◽  
Joon Kim ◽  
Bindu Malla Thakuri ◽  
Junghwa Chun ◽  
Chunho Cho

Abstract. The continuous measurement of H2O and CO2 fluxes using the eddy covariance (EC) technique is still challenging for forests in complex terrain because of large amounts of wet canopy evaporation (EWC), which occur during and following rain events when the EC systems rarely work correctly, and the horizontal advection of CO2 generated at night. We propose new techniques for gap-filling and partitioning of the H2O and CO2 fluxes: (1) a model-stats hybrid method (MSH) and (2) a modified moving point test method (MPTm). The former enables the recovery of the missing EWC in the traditional gap-filling method and the partitioning of the evapotranspiration (ET) into transpiration and (wet canopy) evaporation. The latter determines the friction velocity (u*) threshold based on an iterative approach using moving windows for both time and u*, thereby allowing not only the nighttime CO2 flux correction and partitioning but also the assessment of the significance of the CO2 drainage. We tested and validated these new methods using the datasets from two flux towers, which are located at forests in hilly and complex terrains. The MSH reasonably recovered the missing EWC of 16 ~ 41 mm year−1 and separated it from the ET (14 ~ 23 % of the annual ET). The MPTm produced consistent carbon budgets using those from the previous research and diameter increment, while it has improved applicability. Additionally, we illustrated certain advantages of the proposed techniques, which enables us to understand better how ET responses to environmental changes and how the water cycle is connected to the carbon cycle in a forest ecosystem.


Author(s):  
Lisa Gorski ◽  
Anita S. Liang ◽  
Samarpita Walker ◽  
Diana Carychao ◽  
Ashley Aviles Noriega ◽  
...  

Prevalence and serovar diversity of Salmonella enterica was measured during a five-year survey of surface waters in a 500 mi^2 agricultural region of the Central California Coast. Rivers, streams, lakes, and ponds were sampled bimonthly resulting in 2,979 samples. Overall prevalence was 56.4% with higher levels detected in Spring than in Fall. Small, but significant, differences in prevalence were detected based on sample locations. Detection of Salmonella was correlated positively with both significant rain events and, in some environments, levels of generic Escherichia coli . Analysis of 1,936 isolates revealed significant serovar diversity, with 91 different serovars detected. The most common isolated serovars were S. enterica subsp. enterica serovars I 6,8:d:- (406 isolates, 21.0%, and potentially monophasic Salmonella Muenchen), Give (334 isolates, 17.3%), Muenchen (158 isolates, 8.2%), Typhimurium (227 isolates, 11.7%), Oranienburg (106 isolates, 5.5%), and Montevideo (78 isolates, 4%). Sixteen of the 24 most common serovars detected in the region are among the serovars reported to cause the most human salmonellosis in the United States. Some of the serovars were associated with location and seasonal bias. Analysis of Xba I Pulsed Field Gel Electrophoresis (PFGE) patterns of strains of serovars Typhimurium, Oranienburg, and Montevideo showed significant intra-serovar diversity. PFGE pulsotypes were identified in the region for multiple years of the survey, indicating persistence or regular re-introduction to the region. Importance Non-typhoidal Salmonella is the among the leading causes of bacterial foodborne illness and increasing numbers of outbreaks and recalls are due to contaminated produce. High prevalence and 91 different serovars were detected in this leafy green growing region. Seventeen serovars that cause most of the human salmonellosis in the United States were detected, with 16 of those serovars detected in multiple locations and multiple years of the 5-year survey. Understanding the widespread prevalence and diversity of Salmonella in the region will assist in promoting food safety practices and intervention methods for growers and regulators.


2020 ◽  
Vol 12 (16) ◽  
pp. 6599
Author(s):  
Peihao Song ◽  
Jianhui Guo ◽  
Enkai Xu ◽  
Audrey L. Mayer ◽  
Chang Liu ◽  
...  

This paper reveals the role of urban green space (UGS) in regulating runoff and hence on urban hydrological balance. The modeling software i-Tree Hydro was used to quantify the effects of UGS on surface runoff regulation and canopy interception capacity in four simulated land-cover scenarios. The results showed that the existing UGS could mitigate 15,871,900 m3 volume of runoff (accounting for 9.85% of total runoff) and intercept approximately 9.69% of total rainfall by the vegetation canopy. UGS in midterm goal and final goal scenarios could retain about 10.74% and 10.89% of total rainfall that falls onto the canopy layer, respectively. The existing UGS in the Luohe urban area had a positive but limited contribution in runoff regulation, with similar responses in future scenarios with increased UGS coverage. UGS rainfall interception volume changed seasonally along with changing leaf area index (LAI) and precipitation, and the interception efficiency was distinctly different under various rain intensities and durations. The UGS had a relatively high interception performance under light and long duration rain events but performed poorly under heavy and short rain events due to limited surface storage capacities. Our study will assist urban planners and policy-makers regarding UGS size and functionality in future planning in Luohe, particularly regarding future runoff management and Sponge City projects.


2019 ◽  
Vol 147 (11) ◽  
pp. 4045-4069 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Yunheng Wang ◽  
Jidong Gao ◽  
Edward R. Mansell

Abstract The assimilation of water vapor mass mixing ratio derived from total lightning data from the Geostationary Lightning Mapper (GLM) within a three-dimensional variational (3DVAR) system is evaluated for the analysis and short-term forecast (≤6 h) of a high-impact convective event over the northern Great Plains in the United States. Building on recent work, the lightning data assimilation (LDA) method adjusts water vapor mass mixing ratio within a fixed layer depth above the lifted condensation level by assuming nearly water-saturated conditions at observed lightning locations. In this algorithm, the total water vapor mass added by the LDA is balanced by an equal removal outside observed lightning locations. Additional refinements were also devised to partially alleviate the seasonal and geographical dependence of the original scheme. To gauge the added value of lightning, radar data (radial velocity and reflectivity) were also assimilated with or without lightning. Although the method was evaluated in quasi–real time for several high-impact weather events throughout 2018, this work will focus on one specific, illustrative severe weather case wherein the control simulation—which did not assimilate any data—was eventually able to initiate and forecast the majority of the observed storms. Given a relatively reasonable forecast in the control experiment, the GLM and radar assimilation experiments were still able to improve the short-term forecast of accumulated rainfall and composite radar reflectivity further, as measured by neighborhood-based metrics. These results held whether the simulations made use of one single 3DVAR analysis or high-frequency (10 min) successive cycling over a 1-h period.


Sign in / Sign up

Export Citation Format

Share Document