Influence of Nano Silica Coating on the Functional Properties of Cotton Fabrics

2009 ◽  
Vol 67 ◽  
pp. 149-154
Author(s):  
K. Sasipriya ◽  
N. Gobi ◽  
R. Palanivelu ◽  
T.V. Ramachandran ◽  
V. Rajendran

Coating of nanoparticles on fabrics provides huge potential applications in textile industry. The microencapsulation process is used to encapsulate the nanosilica particles which is used to coat on the surface of fabrics and to observe the special properties such as anti-bacterial, wrinkle resistance, etc. The amorphous nano silica particles were prepared from the natural resources through chemical route. The encapsulated nano silica was prepared using sodium alginate as a wall material by the coacervation method. The prepared sample was coated on the surface of the fabrics by pad-dry-cure method. The anti-bacterial studies were carried out for the nano silica coated and uncoated fabrics and the results would demonstrate the antibacterial effectiveness of treated cotton fabrics. The basic properties like tensile strength, tear strength, air permeability, crease recovery and whiteness index have been analysed for the coated and uncoated fabrics.

2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


2021 ◽  
pp. 152808372110242
Author(s):  
Kadir Bilisik ◽  
Mahmuda Akter

In this paper, graphene, graphene/matrix, and graphene/fiber nanocomposites, including their synthesis process, fabrication, properties, and potential applications, were reviewed. It was found that several synthesis techniques for nanographene were developed, such as liquid-phase exfoliation and chemical vapor deposition. In addition, some fabrication processes of graphene/matrix and graphene/fiber-based nanocomposites were made, including in-situ polymerization, nanostitching in that single layer nano graphene plate could be interconnected by means of carbon nanotube stitching, resin transfer molding, and vacuum-assisted resin transfer molding. Several properties, including mechanical, thermal, and electrical, on the graphene nanoplatelets materials were summarized in this review paper. It was realized that graphene, graphene/matrix, and graphene/fiber nanocomposites have extraordinary mechanical, thermal, and electrical properties used in advanced engineering applications, including soft robotics, microelectronics, energy storage, biomedical and biosensors as well as textile industry.


2015 ◽  
Vol 15 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Sheraz Ahmad ◽  
Faheem Ahmad ◽  
Ali Afzal ◽  
Abher Rasheed ◽  
Muhammad Mohsin ◽  
...  

Abstract This paper aims to investigate the relationship between fabric weave structure and its comfort properties. The two basic weave structures and four derivatives for each selected weave structure were studied. Comfort properties, porosity, air permeability and thermal resistance of all the fabric samples were determined. In our research the 1/1 plain weave structure showed the highest thermal resistance making it suitable for cold climatic conditions. The 2/2 matt weave depicted the lowest thermal resistance which makes it appropriate for hot climatic conditions.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2640 ◽  
Author(s):  
Maria Amaya Vergara ◽  
Melissa Cortés Gómez ◽  
Maria Restrepo Restrepo ◽  
Jorge Manrique Henao ◽  
Miguel Pereira Soto ◽  
...  

Fique fibers, native to Colombia, are traditionally used for ropes and bags. In the extraction of long fibers for these purposes, the same amount of short fibers is generated; the short fibers are then discarded in the soil or in landfills. This agro-industrial waste is cellulose-rich and can be potentially developed into new biobased products. As an alternative use for these fibers, viscose regenerated fibers with potential applications in the textile industry were developed. Fique waste fibers were pulped (to produce fique cellulose pulp, FCP) using a 33 design of experiment (DOE) to adjust the variables of the whitening treatment, and DOE analysis showed that time and hydrogen peroxide concentration do not have a significant effect on non-cellulosic remotion, unlike temperature. The behavior of this pulp in the production of viscose was compared against that of commercially available wood cellulose pulp (WCP). FCP showed a suitable cellulose content with a high degree of polymerization, which makes it a viable pulp for producing discontinuous viscose rayon filaments. Both pulps showed the same performance in the production of the viscose dope and the same chemical, thermal, and mechanical behavior after being regenerated.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 980 ◽  
Author(s):  
Dorra Dridi ◽  
Aicha Bouaziz ◽  
Sondes Gargoubi ◽  
Abir Zouari ◽  
Fatma B’chir ◽  
...  

We report an analysis of chemical components of essential oils from barks of Ceylon cinnamon and cloves of Syzygium aromaticum and an investigation of their antibacterial activity. The components of oils were determined by using Gas Chromatography/Mass Spectrometry (GC-MS) analysis, and the antimicrobial activity was assessed by the disk diffusion test. The synergic effect of essential oils mixture (cinnamon oil and clove oil) was evaluated. Antimicrobial properties were conferred to cellulosic fibers through microencapsulation using citric acid as a green binding agent. Essential oil mixture was encapsulated by coacervation using chitosan as a wall material and sodium hydroxide as a hardening agent. The diameter of the produced microcapsules varies between 12 and 48 μm. Attachment of the produced microcapsules onto cotton fabrics surface was confirmed by Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy, optical microscopy and Scanning Electron Microscopy (SEM) analysis. The results show that microcapsules were successfully attached on cotton fabric surfaces, imparting antibacterial activity without significantly affecting their properties. The finished cotton fabrics exhibited good mechanical properties and wettability.


2011 ◽  
Vol 30 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Pornanong Aramwit ◽  
Tippawan Siritientong ◽  
Teerapol Srichana

2020 ◽  
Vol 8 ◽  
Author(s):  
Cristina Belda Marín ◽  
Vincent Fitzpatrick ◽  
David L. Kaplan ◽  
Jessem Landoulsi ◽  
Erwann Guénin ◽  
...  

Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.


2020 ◽  
pp. 152808372091441
Author(s):  
Gizem Kayabaşı ◽  
Özgü Özen ◽  
Demet Yılmaz

Electronic or conductive textiles have attracted particular attention because of their potential applications in the fields of energy storage, supercapacitors, solar cells, health care devices, etc. Contrary to solid materials, the properties of textile materials such as stretchability, foldability, washability, etc. make the textiles ideal support materials for electronic devices. Therefore, in recent years, various conductive materials and production methods have been researched extensively to make the textiles conductive. In the present study, an alternative method based on imparting the conductivity to the fiber-based structure for the production of conductive textiles was established. Considering the contribution of unique characteristics of the fiber-based structure to the clothing systems, imparting the conductivity to the fibrous structure before yarn and fabric production may help to protect the breathable, lightweight, softness, deformable and washable of textile structure, and hence to improve the wearability properties of the electronic textiles. In the study, carbon black nanoparticles were selected as a conductive material due to low cost and easy procurable while cotton fiber together with other fiber types such as polyester, acrylic and viscose rayon fibers were used due to their common usage in the textile industry. In addition, various production parameters (CB concentration, feeding rate, etc.) were analyzed and the results indicated that the developed alternative method is capable to produce conductive yarns and electrical resistance of the yarns was about 94–4481 kΩ. The yarns had comparable yarn tenacity and breaking elongation properties, and still carried conductive character even after washing. In literature, there has been no effort to get conductivity in this manner and the method can be considered to be a new application for added-on or built-in future wearable electronics. Also, in the study, produced conductive yarns were used as a collector to gather the nanofibers onto the yarn to produce hybrid yarns enabling the production of functional textile products.


1976 ◽  
Vol 46 (4) ◽  
pp. 261-264 ◽  
Author(s):  
Tyrone L. Vigo

Cotton fabrics with polysulfide crosslinks were prepared by reacting chlorodeoxycellulose with ethylenediamine hydrosulfide in ethylenediamine at 54–100°C. The polysulfide fabrics had good wet wrinkle resistance (280°) and strength retention (above 65%). Oxidation of the crosslinked fabrics with hydrogen peroxide did not adversely affect these textile properties. The effect of reaction time and temperature, hydrosulfide concentration, reaction solvents, method of treatment, and degree of substitution of chlorodeoxycellulose on the strength and wrinkle resistance of the polysulfide crosslinked fabrics was determined.


2016 ◽  
Vol 87 (2) ◽  
pp. 244-257 ◽  
Author(s):  
Ngan Yi Kitty Lam ◽  
Meng Zhang ◽  
Hui-fen Guo ◽  
Chu Po Ho ◽  
Li Li

Chitosan has been widely studied for use in many areas, such as for its applications in the biomedical, engineering and pharmaceutical fields, as well as in industry, because of its unique properties, including biodegradability, antimicrobial activity, polycationic nature and biocompatibility. Thanks to the rapid development of materials science, chitosan applications are now possible in textiles. However, there are still many limitations of chitosan fibers in terms of their high electrostaticity, poor mechanical properties and high cost, which are obstacles that inhibit potential applications of chitosan fiber in the industry. Generally, in order to achieve the best performance with chitosan and enhance its commercial value, chitosan fibers are usually blended with long cotton fibers in the textile industry. Therefore, based on preliminary experiments and feedback from the industry, this study was carried out to further investigate the relationship between fiber length, fiber interaction and yarn performance. The results of this study would therefore help to reduce the production cost of yarns with the blending parameters used and also expand the utilization and applications beyond medical applications to fashion-based functional wear. The sliver-blending method offers better tensile properties of yarn samples, while the fiber-blending method offers higher uniformity of fiber distribution. This study would help to reduce the production cost of yarns by blending and also to expand the utilization and application not limited to fashion-based functional wear.


Sign in / Sign up

Export Citation Format

Share Document