Effect of unsaturation on physicochemical properties of maleic anhydride–grafted acrylonitrile butadiene styrene terpolymer

2017 ◽  
Vol 50 (6) ◽  
pp. 520-536 ◽  
Author(s):  
Olongal Manaf ◽  
Sheeja ◽  
Ameen Jowhar ◽  
Athiyanathil Sujith

In order to find out the shift of ductile nature of acrylonitrile-butadiene-styrene (ABS) polymer to brittle nature while maleic anhydride (MA) grafting, the iodine value of different MA-grafted ABS (MA-g-ABS) sampled has been determined. The iodine value of thermoplastic polymer is found by Wijs method with slight modification to overcome the poor solubility of thermoplastics in tetrachloromethane. Different samples with varying MA content were prepared using internal mixer. All the specimens were characterized by attenuated total reflectance IR spectroscopy and X-ray diffraction analysis. The iodine value measurements revealed that grafting and cross-linking evidently reduced the unsaturation in ABS polymer matrix. The grafting of MA causes the decrease in impact strength, flexural modulus, and a significant increase in crystallinity, tensile strength, yield point, and flexural strength, whereas thermal stability remains intact. Field emission scanning electron microscope images showed noticeable difference in broken surface texture between ABS and grafted samples.

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1493 ◽  
Author(s):  
Wang ◽  
Li ◽  
Xie ◽  
Wu ◽  
Huang ◽  
...  

To improve the poor impact toughness of polypropylene (PP), organo-sepiolite (O-Sep) filled 80/20 (w/w) polypropylene/poly(acrylonitrile-butadiene-styrene) (PP/ABS) nanocomposites were fabricated. The contents of O-Sep were correlated with the morphological, mechanical, and rheological behavior of PP/ABS/O-Sep blends. Scanning electron microscopy (SEM) was applied to study the morphology and thermogravimetric analysis (TGA) was applied to study the thermal stability. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were applied to study the crystallinity. The obtained results show that O-Sep enhanced the dispersion of ABS in the PP matrix and increased the crystallinity of blends. The rheological results show that O-Sep could increase the viscosity, storage modulus, and loss modulus of blends. Moreover, the mechanical behavior shows that O-Sep (at proper content) simultaneously increased the tensile modulus, flexural modulus, and impact strength of PP/ABS/O-Sep blends.


2021 ◽  
Author(s):  
Csilla Varga ◽  
Balázs Heller ◽  
Lilla Simon-Stőger ◽  
Éva Makó

Abstract Waste high-density polyethylene (w-HDPE)/ acrylonitrile-butadiene-styrene (ABS)/ground tire rubber (GTR) have been melt blended by two-roll milling. Ternary blends of w-HDPE/ABS/GTR have been observed to be incompatible in the composition range studied which revealed in the deteriorated mechanical properties. Two main types of compatibilizers such as an olefin-maleic anhydride copolymer based one synthesized by the authors and a commercial maleic anhydride grafted polypropylene (MA-g-PP) have been chosen for enhancing compatibility between the components ergo the mechanical properties. For characterizing tensile and impact properties of the blends mechanical tests have been carried out besides the scanning electron microscopy (SEM), X-ray diffraction and Fourier transform infrared spectroscopy. The most advantageous result in industrial practice can be that the experimental additive allows to apply higher GTR concentration ergo gives the opportunity to recycle higher level of GTR.


2013 ◽  
Vol 32 (4) ◽  
pp. 339-343 ◽  
Author(s):  
Siyamak Bagheriyan

AbstractSb2S3 nanoparticles were synthesized via a simple sonochemical reaction between SbCl3 and thioacetamide. The effect of different parameters such as power and time of pulsation on the morphology of the product has been investigated. The Sb2 S3 nanostructures were then added to acrylonitrile-butadiene-styrene terpolymer. The effect of Sb2 S3 nanostructures on the thermal stability of the polymeric matrix has been examined. The thermal decomposition of the nanocomposite shifts towards higher temperature in the presence of the Sb2 S3 . Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), photoluminescence (PL) spectroscopy, thermogravimetric analysis (TGA), UL-94 and limiting oxygen index (LOI) analysis.


2014 ◽  
Vol 1052 ◽  
pp. 220-225 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of styrene-co-maleic anhydride (SMA) compatibilizer on the mechanical thermal and morphological properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were inverstigated. POM/ABS blends without and with SMA compatibilizer were prepared by an internal mixer and molded by compression molding. It was found that the dispersion of ABS phase and compatibility could not improve by using SMA compatibilizer in POM/ABS blends due to SMA can be miscible with ABS phase more than POM phase. The addition of ABS in a range of 10-30 wt% could improve the Young’s modulus of POM. Impact strength, tensile strength and percent strain at break of POM/ABS blends decreased with increasing ABS content. The addition of compatibilizer improved Young’s modulus of POM/ABS (60/40, 50/50) blends. The addition of ABS increased the degradation temperature of POM, while SMA compatibilizer did not improve the degradation of POM/ABS blends.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 931
Author(s):  
Ioana-Codruţa Mirică ◽  
Gabriel Furtos ◽  
Ondine Lucaciu ◽  
Petru Pascuta ◽  
Mihaela Vlassa ◽  
...  

The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young’s modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.


2020 ◽  
Vol 7 (9) ◽  
pp. 200800
Author(s):  
Xue Yang ◽  
Hao Wang ◽  
Xueqing Liu ◽  
Jiyan Liu

A novel nitrogen-containing alkylphosphinate salt—aluminium β-(p-nitrobenzamide) ethyl methyl phosphinate (AlNP) was synthesized and used to flame retard acrylonitrile–butadiene–styrene copolymer (ABS). The Fourier transform infrared spectrometry, 1 H, 13 C and 31 P nuclear magnetic resonance and X-ray fluorescent spectroscopy (XRF) were applied to characterize the structure and composition of products. The flame retardancy performance, thermal properties and mechanical strength of the ABS/AlNP with respect to AlNP loading were investigated. AlNP was stable before 330°C and decomposed very slowly with residues high up to 56.1% at 700°C. Adding 25–30 wt% of AlNP alone can make ABS to pass V0 rating in the vertical burning tests (UL 94). The results according to the micro combustion calorimeter, thermogravimetric analysis showed that AlNP can depress the heating release and retard the thermal degradation of the ABS. Scanning electron microscopy observation of the residues from LOI test indicated that AlNP formed the condensed and tough residues layer during combustion; XRF analysis showed that the residues contained phosphorus and aluminium element and nitrogen element was not detected. The compact phosphorus/aluminium-rich substance acted as a barrier to enhance flame-retardant properties of the ABS.


2019 ◽  
Vol 19 (1) ◽  
pp. 83-99 ◽  
Author(s):  
B. Yilmaz ◽  
E. T. Irmak ◽  
Y. Turhan ◽  
S. Doğan ◽  
M. Doğan ◽  
...  

AbstractThe aims of the present study were to synthesize the intercalated kaolinite samples with dimethylsulfoxide (DMSO), glutamic acid (GA), succinimide (SIM), cetylpyridiniumchloride (CPC), and hexadecyltrimethylammoniumchloride (HDTMA+); to characterize by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and to determine the hemocompatibility and the cytotoxic effects of the intercalated kaolinite nanoclays on human lymphocytes. It was found that the intercalation with DMSO did not cause any decrease in cell viability until its maximum concentration (500 µg/mL), however, the intercalation with SIM, CPC, and (HDTMA+) causd important decreases in lymphocyte viabilities. It was determined that no significant decrease was observed in protein content of the lymphocyte cells exposed to the kaolinite nanoclays except the ones intercalated with SIM. Furthermore, the pristine kaolinite nanoclays which were intercalated with DMSO, GA, and SIM exhibited high hemocompatibility and the nanoclays intercalated with CPC and (HDTMA+) were highly hemocompatibile for the amounts below 125 and 500 µg/mL, respectively. All the results of this work can serve for the human risk assesment of intercalated nanoclays.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2716
Author(s):  
Hoang Anh Tuan ◽  
Shinji Hirai ◽  
Shota Inoue ◽  
Alharbi A. H. Mohammed ◽  
Shota Akioka ◽  
...  

This research reports the processability and mechanical properties of silk resins prepared by hot-pressing followed by hot-rolling and then analyzes their thermal and structural properties. The results show that regenerated silk (RS) resins are better suited for hot-rolling than Eri and Bombyx mori silk resins (untreated silk). When hot-rolling at 160 °C with a 50% of reduction ratio, maximum bending strength and Young’s modulus of RS resin reaches 192 MPa and 10.2 GPa, respectively, after pretreatment by immersion in 40 vol% ethanol, and 229 MPa and 12.5 GPa, respectively, after pretreatment by immersion in boiling water. Increased strength of the material is attributed to the increased content of aggregated strands and intramolecular linking of β sheets (attenuated total reflectance Fourier-transform infrared spectroscopy) and higher crystallinity (X-ray diffraction analysis). After hot-pressing and hot-rolling, RS resins have a stable decomposition temperature (297 °C).


2019 ◽  
Vol 25 (3) ◽  
pp. 276-280
Author(s):  
Canan URAZ

In this study, electroless nickel (EN) plating on acrylonitrile butadiene styrene (ABS) engineering plastic using room temperature ionic liquids (RTIL) was studied. Electroless plating is a fundamental step in metal plating on plastic. This step makes the plastic conductive and makes it possible to a homogeneous and hard plating without using any hazardous and unfriendly chemical such as palladium, tin, etc. In the industry there are many distinct chemical materials both catalysts and activation solutions for the electroless bath which is one of the most important parts of the process. In this study the effects of the ionic liquid, plating time, and sand paper size were investigated on electroless nickel plating. The etching and the plating processes were performed with environmentally friendly chemicals instead of the chromic and sulphuric acids used in the traditional processes. Experiments were carried out with and without ionic liquid, EMIC, 1-ethyl-3-methyl imidazolium chloride (C6H11N2Cl), and with 400, 500 and 800 grit sandpaper with the application of the sand attrition process and 70, 80, and 90 °C bath temperatures with 30, 60, and 90 minutes of deposition time. The surface morphology and the thickness of deposit analysis were performed using the Fischer scope X-Ray XDL-B System, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Due to the results of the experiments and analysis, the electroless nickel plating on ABS plastic was a success. The best plating was obtained at 5.010 μm as the maximum plating thickness, at 90 min of plating time and 80 °C as the plating bath temperature for electroless nickel plating on ABS plastic whit the surface activated with 800 grit sandpaper using EMIC ionic liquid. DOI: http://dx.doi.org/10.5755/j01.ms.25.3.20116


2014 ◽  
Vol 496-500 ◽  
pp. 317-321
Author(s):  
Shou Hai Wang ◽  
Jun Gao ◽  
Gu Ren Fei ◽  
Ping Zhang ◽  
Jun Huang ◽  
...  

Acrylonitrile-butadiene-styrene (ABS) / polymethyl methacrylate (PMMA) with the addition of maleic anhydride grafted polystyrene (KT-5) and polyolefin elastomer (POE) were melt processed in a co-rotating twin-screw extruder. The effect of KT-5 and POE content on the mechanical properties of ABS/PMMA was investigated. Experiment results indicate that KT-5 can improve the tensile strength and the composites are toughened effectively as the addition of POE. According to Orthogonal tests, it demonstrates that POE ha a greater effect on the blends than KT-5, and there exist no obvious interactivity between the two components.


Sign in / Sign up

Export Citation Format

Share Document