The Heterophase Polymerisation of Styrene in the Presence of Zinc Oxide Nanoparticles

2017 ◽  
Vol 44 (10) ◽  
pp. 13-18
Author(s):  
N.S. Serkhacheva ◽  
N.I. Prokopov ◽  
A.Yu. Gerval'd ◽  
N.A. Lobanov ◽  
I.A. Gritskova

Heterophase polymerisation of styrene was carried out, and nanocomposite polystyrene microspheres with a controllable content of ZnO nanoparticles were synthesised. The colloid chemical properties of the obtained polymer suspensions were studied, and it was shown that the particles have a ‘core–shell’ structure with a ZnO content of up to 30%.

2018 ◽  
Vol 53 (2) ◽  
pp. 119-130 ◽  
Author(s):  
Vandana Parihar ◽  
Mohan Raja ◽  
Rini Paulose

Abstract Nanotechnology allocate with the production and usage of material with nanoscale dimension, nanoparticles are large surface area to volume ratio and thus very specific properties. Zinc oxide (ZnO) nanoparticles had been in current studies due to its large bandwidth and high exciton binding energy and it has prospective applications such as electronic, optical, mechanical, magnetic and chemical properties that are significantly different from those of bulk counterpart. The aims of this review to provide a comprehensive view on structural, synthesis and electrochemical properties of the ZnO nanoparticles, which were synthesized by different methods.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36845-36857 ◽  
Author(s):  
Tingting Ren ◽  
Jie Wang ◽  
Jinfeng Yuan ◽  
Mingwang Pan ◽  
Gang Liu ◽  
...  

P(VC-co-AAEM)/ZnO nanoparticles are prepared by a nano-coating method, and the morphology of the raspberry-like particles is adjusted by hydrophilicity and NaOH concentration.


2020 ◽  
Vol 20 (10) ◽  
pp. 5977-5996 ◽  
Author(s):  
Saee Gharpure ◽  
Balaprasad Ankamwar

With increase in incidence of multidrug resistant pathogens, there is a demand to adapt newer approaches in order to combat these diseases as traditional therapy is insufficient for their treatment. Use of nanotechnology provides a promising alternative as antimicrobial agents as against traditional antibiotics. Metal oxides have been exploited for a long times for their antimicrobial properties. Zinc oxide nanoparticles (ZnO NPs) are preferred over other metal oxide nanoparticles because of their bio-compatible nature and excellent antibacterial potentials. The basic mechanism of bactericidal nature of ZnO nanoparticles includes physical contact between ZnO nanoparticles and the bacterial cell wall, generation of reactive oxygen species (ROS) as well as free radicals and release of Zn2+ ions. This review focuses on different synthesis methods of ZnO nanoparticles, various analytical techniques frequently used for testing antibacterial properties, mechanism explaining antibacterial nature of ZnO nanoparticles as well as different factors affecting the antibacterial properties.


Nano Letters ◽  
2012 ◽  
Vol 12 (11) ◽  
pp. 5840-5844 ◽  
Author(s):  
Dali Shao ◽  
Hongtao Sun ◽  
Mingpeng Yu ◽  
Jie Lian ◽  
Shayla Sawyer

2015 ◽  
Vol 6 ◽  
pp. 1568-1579 ◽  
Author(s):  
Zitao Zhou ◽  
Jino Son ◽  
Bryan Harper ◽  
Zheng Zhou ◽  
Stacey Harper

Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products, thus understanding their health and environmental impacts is necessary to appropriately manage their risks. To keep pace with the rapid increase in products utilizing engineered ZnO NPs, rapid in silico toxicity test methods based on knowledge of comprehensive in vivo and in vitro toxic responses are beneficial in determining potential nanoparticle impacts. To achieve or enhance their desired function, chemical modifications are often performed on the NPs surface; however, the roles of these alterations play in determining the toxicity of ZnO NPs are still not well understood. As such, we investigated the toxicity of 17 diverse ZnO NPs varying in both size and surface chemistry to developing zebrafish (exposure concentrations ranging from 0.016 to 250 mg/L). Despite assessing a suite of 19 different developmental, behavioural and morphological endpoints in addition to mortality in this study, mortality was the most common endpoint observed for all of the ZnO NP types tested. ZnO NPs with surface chemical modification, regardless of the type, resulted in mortality at 24 hours post-fertilization (hpf) while uncoated particles did not induce significant mortality until 120 hpf. Using eight intrinsic chemical properties that relate to the outermost surface chemistry of the engineered ZnO nanoparticles, the highly dimensional toxicity data were converted to a 2-dimensional data set through principal component analysis (PCA). Euclidean distance was used to partition different NPs into several groups based on converted data (score) which were directly related to changes in the outermost surface chemistry. Kriging estimations were then used to develop a contour map based on mortality data as a response. This study illustrates how the intrinsic properties of NPs, including surface chemical modifications and capping agents, are useful to separate and identify ZnO NP toxicity to zebrafish (Danio rerio).


2018 ◽  
Vol 20 (8) ◽  
pp. 5771-5779 ◽  
Author(s):  
Yanmei Sun ◽  
Dianzhong Wen ◽  
Xuduo Bai

Nonvolatile ternary memory devices were fabricated from the composites polymer blends containing zinc oxide (ZnO) nanoparticles.


2018 ◽  
Vol 16 (1) ◽  
pp. 556-570 ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Shaan Bibi Jaffri

AbstractHighly stable semiconducting silver doped zinc oxide nanoparticles have been synthesized via facile, biomimetic and sustainable route, through utilization of Zinc acetate dihydrate (C4H6O4Zn · 2H2O) as host, Silver nitrate (AgNO3) as dopant and phytochemicals of angiospermic medicinal plant Prunus cerasifera as the reducing agents. Synthesis of Ag doped ZnO nanoparticles was done in a one pot synthetic mode by varying the amount of dopant from 0.2 – 2.0%. Synthesized photocatalyst nanoparticles were analyzed via UV-vis, FTIR, XRD and SEM. Commendable alleviation in the direct band gap i.e. 2.81 eV was achieved as a result of doping. Silver doped zinc oxide nanoparticles size ranged between 72.11 – 100 nm with rough surface morphology and higher polydispersity degree. The XRD patterns revealed the hexagonal wurtzite geometry of crystals with an average crystallite size of 2.99 nm. Persistent organic dyes Methyl Orange, Safranin O and Rhodamine B were sustainably photodegraded in direct solar irradiance with remarkable degradation percentages up to 81.76, 74.11 and 85.52% in limited time with pseudo first order reaction kinetics (R2 =0.99, 0.99 and 0.97). Furthermore, efficient inhibition against nine microbes of biomedical and agriculturally significance was achieved. Synthesized nanoparticles are potential green remediators of polluted water and perilous pathogens.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Meron Girma Demissie ◽  
Fedlu Kedir Sabir ◽  
Gemechu Deressa Edossa ◽  
Bedasa Abdisa Gonfa

The synthesis of metal oxide nanoparticles with the use of medicinal plant extract is a promising alternative to the conventional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from indigenous “Koseret” Lippia adoensis leaf extract which is an endemic medicinal plant and cultivated in home gardens of different regions of Ethiopia. The biosynthesized zinc oxide nanoparticles were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. Furthermore, this study also evaluated the antibacterial activity of the synthesized ZnO nanoparticles against clinical and standard strains of Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Enterococcus faecalis by the disc diffusion method. According to the result of this study, ZnO nanoparticles synthesized using Lippia adoensis leaf extract showed promising result against both Gram-positive and Gram-negative bacterial strains with a maximum inhibition zone of 14 mm and 12 mm, respectively, using uncalcinated form of the synthesized ZnO nanoparticles.


2019 ◽  
Vol 43 (30) ◽  
pp. 11934-11948 ◽  
Author(s):  
Prathap Somu ◽  
Subhankar Paul

Biodegradable ZnO nanoparticles with excellent biocompatibility prepared via a biogenic process have great potential as therapeutic agent-cum-drug carriers for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document