Investigation of Tack Coat Bond Damage Mechanism in Asphalt Surfaced Pavements under Dynamic Truck Loads

Author(s):  
Mostafa Estaji ◽  
Erdem Coleri ◽  
Blaine Wruck

Bonding created by the tack coat allows the pavement system to carry heavy truck loads as a monolithic structure and improves the structural integrity. In Oregon and throughout the U.S.A., CSS-1H is the most commonly used tack coat type. However, field observations have revealed that new engineered tack coats, although more expensive, outperform the conventional types in relation to shear resistance. In this study, the impact of these new engineered emulsions on in-situ bond performance was quantified by laboratory testing and numerical modeling. Bonding damage performance of all tack coats was experimentally determined by using direct shear tests. Full-scale moving truck load models were developed and calibrated using the load-displacement parameters obtained from the laboratory shear tests. The impact of adverse construction conditions, such as dust, rain, and tack coat coverage, on tack coat bond damage under heavy truck loads was determined. It was concluded that the presence of dust had relatively the lowest contribution to shear damage. Rain during construction had the highest impact on the damage behavior and tack coat application on a wet surface increases the potential for damage by 20.1%. A 50% coverage of tack coat during construction resulted in 12.8% higher damage levels compared with 100% tack coat coverage of the surface area. Moving load models for heavy trucks caused 2.44 times more bonding damage at the bonded interface compared with the damage created by smaller trucks (F450).

2016 ◽  
Vol 9 (6) ◽  
pp. 83 ◽  
Author(s):  
Mohammadehsan Zarringol ◽  
Mohammadreza Zarringol

<p>This paper aims to determine the impact of sand-clay bond in geo-grid and geo-textile on bearing capacity. In doing so, we examined clay-geo-synthetics, sand-geo-synthetics and clay-sand-geo-synthetics samples using direct shear tests. The friction between clay and reinforcement was provided by encapsulated-sand system.</p><p>This method is used to transfer the tensile force mobilized in geo-synthetics from sand to clay and improve the strength parameters of clay. This study indicated that the provision of a thin layer of sand at both sides of the reinforcement significantly improved the shear strength of clay soil.</p>Bond coefficient computations indicated that the shear strength of clay-geo-synthetics samples was higher than non-reinforced clay. The increased strength was due to the impact of open meshes of geo-synthetics which provided some degree of resistance bearing. To determine the share of resistance bearing provided by geo-synthetic transverse members in the entire direct shear strength, we conducted a series of tests on geo-synthetics-reinforced samples with and without transverse members. The resistance bearing provided by geo-synthetic transverse members was almost 10% of total shear strength. The results indicated that encapsulated geo-grid and geo-textile sand system increased the bearing capacity of clay, with geo-grid being more efficient than geo-textile.


2019 ◽  
Vol 92 ◽  
pp. 13004
Author(s):  
Roxana Vasilescu ◽  
Kexin Yin ◽  
Anne-Laure Fauchille ◽  
Panagiotis Kotronis ◽  
Christophe Dano ◽  
...  

Energy piles are double purpose foundation elements used both for transferring loads to the soil and temperature regulation in buildings. The response of the pile-soil interface is influenced by daily and seasonal temperature variations. In order to assess the impact of thermal cycles on the mobilization of shear strength in energy piles, a series of saturated soil-concrete interface direct shear tests were performed in the laboratory for different temperature gradients with a new interface direct shear device adapted for thermomechanical loading. As natural soils are very complex due to a high variability of mineralogy and anisotropy, silica and carbonate sands were chosen in this study. Those sands are considered as the main types of sandy soils commonly met in geotechnics. The experimental campaign is divided in two parts: (i) Concrete-soil direct shear tests at 13°C (constant temperature) to be used as a reference (ii) Concrete-soil direct shear tests after 10 temperature cycles with a gradient ΔT=10°C, under submerged conditions. For these two types of soils, realistic temperature cycles applied between 8 and 18°C cause the overall low contraction of the samples. However the interface friction angles are not significantly modified before and after the temperature cycles. Even if the vertical strains of soils are cumulative along temperature cycles, soil’s strains and friction angle changes are relatively negligible for the temperatures and water content tested, which support the low impact of temperature cycles on the deformation of soil concrete foundation under submerged conditions. These experimental results bring new features which will be implemented in numerical models to study the long-term use of energy piles.


PROMINE ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 71-77
Author(s):  
Novandri Kusuma Wardana

Mining activities is commonly to work with the problem of stability of rock mass, then befordesaining mine’s slope should know rock shear strength parameters, such as cohesion (c) andinternal friction angle value ( . Beside those parameters, also needed to know the impact ofwater content to the rocks. The water content will effect rock’s shear strength, proof by the rockcondition which is ductile when it is dry and soft when it is wet. Based on test results was doneusing sandstone with laboratory scale of direct shear test were analyzed using mohr – coulomband patton criteria (1966). It is known that the cohesion (c) of sandstone decreased from 510,35kPa at natural condition down to 133,75 kPa at wet condition. The internal friction angle ( ) alsodecreased from 54,56° at natural condition down to 48,45° at wet condition. The reduction of theshear strength is caused by fragments and clay minerals characteristics which are so reactiveand very easy to absorb water so that the cohesion of the sandstone reduce the active normalstress so that working the shear stress required to cause the shear failure becomeweaker. From the results, it is also known that the shear surface roughness had a lot ofinfluence on the shear strength the normal stresses applied on the direct shear tests werevery low under 20% of UCS.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


2021 ◽  
Vol 13 (15) ◽  
pp. 8201
Author(s):  
Lihua Li ◽  
Han Yan ◽  
Henglin Xiao ◽  
Wentao Li ◽  
Zhangshuai Geng

It is well known that geomembranes frequently and easily fail at the seams, which has been a ubiquitous problem in various applications. To avoid the failure of geomembrane at the seams, photocuring was carried out with 1~5% photoinitiator and 2% carbon black powder. This geomembrane can be sprayed and cured on the soil surface. The obtained geomembrane was then used as a barrier, separator, or reinforcement. In this study, the direct shear tests were carried out with the aim to investigate the interfacial characteristics of photocured geomembrane–clay/sand. The results show that a 2% photoinitiator has a significant effect on the impermeable layer for the photocured geomembrane–clay interface. As for the photocured geomembrane–sand interface, it is reasonable to choose a geomembrane made from a 4% photoinitiator at the boundary of the drainage layer and the impermeable layer in the landfill. In the cover system, it is reasonable to choose a 5% photoinitiator geomembrane. Moreover, as for the interface between the photocurable geomembrane and clay/sand, the friction coefficient increases initially and decreases afterward with the increase of normal stress. Furthermore, the friction angle of the interface between photocurable geomembrane and sand is larger than that of the photocurable geomembrane–clay interface. In other words, the interface between photocurable geomembrane and sand has better shear and tensile crack resistance.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Neeraja Punde ◽  
Jennifer Kooken ◽  
Dagmar Leary ◽  
Patricia M. Legler ◽  
Evelina Angov

Abstract Codon usage frequency influences protein structure and function. The frequency with which codons are used potentially impacts primary, secondary and tertiary protein structure. Poor expression, loss of function, insolubility, or truncation can result from species-specific differences in codon usage. “Codon harmonization” more closely aligns native codon usage frequencies with those of the expression host particularly within putative inter-domain segments where slower rates of translation may play a role in protein folding. Heterologous expression of Plasmodium falciparum genes in Escherichia coli has been a challenge due to their AT-rich codon bias and the highly repetitive DNA sequences. Here, codon harmonization was applied to the malarial antigen, CelTOS (Cell-traversal protein for ookinetes and sporozoites). CelTOS is a highly conserved P. falciparum protein involved in cellular traversal through mosquito and vertebrate host cells. It reversibly refolds after thermal denaturation making it a desirable malarial vaccine candidate. Protein expressed in E. coli from a codon harmonized sequence of P. falciparum CelTOS (CH-PfCelTOS) was compared with protein expressed from the native codon sequence (N-PfCelTOS) to assess the impact of codon usage on protein expression levels, solubility, yield, stability, structural integrity, recognition with CelTOS-specific mAbs and immunogenicity in mice. While the translated proteins were expected to be identical, the translated products produced from the codon-harmonized sequence differed in helical content and showed a smaller distribution of polypeptides in mass spectra indicating lower heterogeneity of the codon harmonized version and fewer amino acid misincorporations. Substitutions of hydrophobic-to-hydrophobic amino acid were observed more commonly than any other. CH-PfCelTOS induced significantly higher antibody levels compared with N-PfCelTOS; however, no significant differences in either IFN-γ or IL-4 cellular responses were detected between the two antigens.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2058
Author(s):  
Nicole Reisinger ◽  
Dominik Wendner ◽  
Nora Schauerhuber ◽  
Elisabeth Mayer

Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (RECs) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in RECs. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.


2020 ◽  
Vol 4 (4) ◽  
pp. 182
Author(s):  
Luciano Ombres ◽  
Salvatore Verre

In the paper, the bond between a composite strengthening system consisting of steel textiles embedded into an inorganic matrix (steel reinforced grout, SRG) and the concrete substrate, is investigated. An experimental investigation was carried out on medium density SRG specimens; direct shear tests were conducted on 20 specimens to analyze the effect of the bond length, and the age of the composite strip on the SRG-to-concrete bond behavior. In particular, the tests were conducted considering five bond length (100, 200, 250, 330, and 450 mm), and the composite strip’s age 14th, 21st, and 28th day after the bonding. Test results in the form of peak load, failure modes and, bond-slip diagrams were presented and discussed. A finite element model developed through commercial software to replicate the behavior of SRG strips, is also proposed. The effectiveness of the proposed numerical model was validated by the comparison between its predictions and experimental results.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ali Ahmed ◽  
Muhammad Faisal Nadeem ◽  
Irfan Khan ◽  
Hani Alquhayz ◽  
Muhammad Adnan Khan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document