Biocompatibility study of modified injectable hyaluronic acid hydrogel with mannitol/BSA to alveolar bone cells

2020 ◽  
pp. 088532822097174
Author(s):  
Kwanhatai Areevijit ◽  
Nirada Dhanesuan ◽  
Jittima Amie Luckanagul ◽  
Sorasun Rungsiyanont

The quality and quantity of bone are crucial to the success of dental implant treatment. Recently, bone grafting materials have reached some limitations. This study aimed to evaluate the biocompatibility of novel drug delivery material, injectable methacrylated hyaluronic acid hydrogel incorporated with different ratios of mannitol and BSA (Man/BSA MeHA), to human alveolar bone cells. The three-dimensionally encapsulated cell culture was evaluated with the resazurin cell viability test, alkaline phosphatase activity assay, immunohistochemistry test for collagen type-I synthesis, and cell morphology. The results showed that the encapsulated cells were viable in all four ratios of Man/BSA MeHA hydrogel and the average metabolic rate was not less than the control group. The morphology test showed round shape cells at the upper portion of the hydrogel and fibroblast-like or polygonal shape at the lower portion of hydrogel next to the culture plate. All four groups could express enzyme alkaline phosphatase and collagen type-I. In conclusion, four ratios of Man/BSA MeHA hydrogel were biocompatible with primary human alveolar bone cells.

2005 ◽  
Vol 114 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Tomoko Tateya ◽  
Jin Ho Sohn ◽  
Ichiro Tateya ◽  
Diane M. Bless

This study aimed to clarify the characteristics of rat vocal fold scarring by examining the alteration of key components in the extracellular matrix: hyaluronic acid, collagen, and fibronectin. Under monitoring with a 1.9-mm-diameter telescope, unilateral vocal fold stripping was performed, and larynges were harvested at 2, 4, 8, and 12 weeks after operation. The vocal folds were histologically analyzed with Alcian blue stain, trichrome stain, and immunofluorescence of collagen type I, collagen type III, and fibronectin. The scarred vocal folds showed less hyaluronic acid and more collagen types I and III than did the controls at all time points. Type III was stable for 12 weeks, while type I declined until 8 weeks and thereafter remained unchanged. Fibronectin increased for 4 weeks and then decreased; it was close to the control level at 8 and 12 weeks. These results suggest that the tissue remodeling process in scarred vocal folds slows down around 2 months after wounding.


2018 ◽  
Vol 7 (2) ◽  
pp. 187-195 ◽  
Author(s):  
J. Ziebart ◽  
S. Fan ◽  
C. Schulze ◽  
P. W. Kämmerer ◽  
R. Bader ◽  
...  

Objectives Enhanced micromotions between the implant and surrounding bone can impair osseointegration, resulting in fibrous encapsulation and aseptic loosening of the implant. Since the effect of micromotions on human bone cells is sparsely investigated, an in vitro system, which allows application of micromotions on bone cells and subsequent investigation of bone cell activity, was developed. Methods Micromotions ranging from 25 µm to 100 µm were applied as sine or triangle signal with 1 Hz frequency to human osteoblasts seeded on collagen scaffolds. Micromotions were applied for six hours per day over three days. During the micromotions, a static pressure of 527 Pa was exerted on the cells by Ti6Al4V cylinders. Osteoblasts loaded with Ti6Al4V cylinders and unloaded osteoblasts without micromotions served as controls. Subsequently, cell viability, expression of the osteogenic markers collagen type I, alkaline phosphatase, and osteocalcin, as well as gene expression of osteoprotegerin, receptor activator of NF-κB ligand, matrix metalloproteinase-1, and tissue inhibitor of metalloproteinase-1, were investigated. Results Live and dead cell numbers were higher after 25 µm sine and 50 µm triangle micromotions compared with loaded controls. Collagen type I synthesis was downregulated in respective samples. The metabolic activity and osteocalcin expression level were higher in samples treated with 25 µm micromotions compared with the loaded controls. Furthermore, static loading and micromotions decreased the osteoprotegerin/receptor activator of NF-κB ligand ratio. Conclusion Our system enables investigation of the behaviour of bone cells at the bone-implant interface under shear stress induced by micromotions. We could demonstrate that micromotions applied under static pressure conditions have a significant impact on the activity of osteoblasts seeded on collagen scaffolds. In future studies, higher mechanical stress will be applied and different implant surface structures will be considered. Cite this article: J. Ziebart, S. Fan, C. Schulze, P. W. Kämmerer, R. Bader, A. Jonitz-Heincke. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res 2018;7:187–195. DOI: 10.1302/2046-3758.72.BJR-2017-0228.R1.


2020 ◽  
Vol 21 (6) ◽  
pp. 2175 ◽  
Author(s):  
Alina Lauer ◽  
Philipp Wolf ◽  
Dorothea Mehler ◽  
Hermann Götz ◽  
Mehmet Rüzgar ◽  
...  

Large segmental bone defects occurring after trauma, bone tumors, infections or revision surgeries are a challenge for surgeons. The aim of our study was to develop a new biomaterial utilizing simple and cheap 3D-printing techniques. A porous polylactide (PLA) cylinder was printed and functionalized with stromal-derived factor 1 (SDF-1) or bone morphogenetic protein 7 (BMP-7) immobilized in collagen type I. Biomechanical testing proved biomechanical stability and the scaffolds were implanted into a 6 mm critical size defect in rat femur. Bone growth was observed via x-ray and after 8 weeks, bone regeneration was analyzed with µCT and histological staining methods. Development of non-unions was detected in the control group with no implant. Implantation of PLA cylinder alone resulted in a slight but not significant osteoconductive effect, which was more pronounced in the group where the PLA cylinder was loaded with collagen type I. Addition of SDF-1 resulted in an osteoinductive effect, with stronger new bone formation. BMP-7 treatment showed the most distinct effect on bone regeneration. However, histological analyses revealed that newly formed bone in the BMP-7 group displayed a holey structure. Our results confirm the osteoinductive character of this 3D-biofabricated cell-free new biomaterial and raise new options for its application in bone tissue regeneration.


2014 ◽  
Vol 34 (5) ◽  
pp. 497-505 ◽  
Author(s):  
F Guo ◽  
YB Sun ◽  
L Su ◽  
S Li ◽  
ZF Liu ◽  
...  

Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats ( n = 32, 180–220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin–eosin and Masson’s trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III (  p < 0.05), while losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions (  p < 0.05). Histological examination of PQ-treated rats showed lung injury and widespread inflammatory cell infiltration in the alveolar space and pulmonary fibrosis, while losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sang In Park ◽  
Yun-Young Sunwoo ◽  
Yu Jin Jung ◽  
Woo Chul Chang ◽  
Moon-Seo Park ◽  
...  

Acupuncture regulates inflammation process and growth factors by increasing blood circulation in affected areas. In this study, we examined whether acupuncture has an effect on wound healing in injured rat. Rats were assigned randomly into two groups: control group and acupuncture group. Acupuncture treatment was carried out at 8 sites around the wounded area. We analyzed the wound area, inflammatory cytokines, proliferation of resident cells, and angiogenesis and induction of extracelluar matrix remodeling. At 7 days after-wounding the wound size in acupuncture-treat group was decreased more significantly compared to control group. In addition, the protein levels of proinflammatory cytokines such as tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) were significantly decreased compared to the control at 2 and 7 days post-wounding. Also, we analyzed newly generated cells by performing immunostaining for PCNA and using several phenotype markers such as CD-31,α-SMA, and collagen type I. In acupuncture-treated group, PCNA-positive cell was increased and PCNA labeled CD-31-positive vessels,α-SMA- and collagen type I-positive fibroblastic cells, were increased compared to the control group at 7 days post-wounding. These results suggest that acupuncture may improve wound healing through decreasing pro-inflammatory response, increasing cell proliferation and angiogenesis, and inducing extracellular matrix remodeling.


2009 ◽  
Vol 626-627 ◽  
pp. 553-558 ◽  
Author(s):  
Xing Ma ◽  
Y.Y. Hu ◽  
Xiao Ming Wu ◽  
J. Liu ◽  
Zhuo Xiong ◽  
...  

Three-dimensional (3D) highly porous poly (DL-lactic-co-glycolic acid)/tricalcium phosphate (PLGA/TCP) scaffolds were fabricated using a rapid prototyping technique (RP). The biopolymer carriers (4mm×4mm×4mm) subsequently were coated with collagen type I (Col) to produce PLGA/TCP/Col composites and utilized as an extracellular matrix for a cell-based strategy of bone tissue engineering. Autologous bone marrow stromal cells (BMSCs) harvested from New Zealand white rabbits were cultured under an osteogenic condition (BMSCs-OB) followed by seeding into the structural highly porous PLGA/TCP/Col composites (i.e. PLGA/TCP/Col/BMSCs-OB). Scanning electron microscopy observation found that the RP-based scaffolds had appropriate microstructure, controlled interconnectivity and high porosity. Modification of the scaffolds with collagen type I (PLGA/TCP/Col) essentially increased the affinity of the carriers to seeding cells, and PLGA/TCP/Col composites were well biocompatible with BMSCs-OB. The PLGA/TCP/Col/BMSCs-OB constructs were then subcutaneously implanted in the back of rabbits compared to controls with autologous BMSCs suspension and carriers alone. As a result, histological new bone formation was observed only in the experimental group with PLGA/TCP/Col/BMSCs-OB constructs 8 weeks after implantation. In the control group with scaffold alone only biodegradation of the carriers was found. Therefore, these results validate our bio-manufacturing methods for a new bone graft substitute.


1991 ◽  
Vol 125 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Annemarie Brüel ◽  
Hans Oxlund

Abstract The biomechanical and biochemical properties of aortas from female rats treated with biosynthetic human GH (b-hGH) for 80 days were investigated. b-hGH was administered at a dose of 5 mg·kg−1·d−1. Treatment with b-hGH increased the body weight by 75% and the diameter of the aorta by 14% compared with the control group. The concentration of collagen and the relative amount of collagen type I were increased, and the concentration of elastin was decreased. Aortas from the b-hGH-treated group showed increased extensibility in the regions corresponding to physiological load values (i.e. 100-200 mmHg), and increased stiffness in regions with higher load values. The increased extensibility at low load values corresponds well with the loss of elastin, and the increased stiffness at higher load values with the increase of collagen and relative increase of collagen type I. These alterations induced by the growth hormone treatment might influence the elasticity and recoiling properties of the aorta.


2020 ◽  
Vol 9 (4) ◽  
pp. 24-30
Author(s):  
A.V. Asaturova ◽  
◽  
N.M. Faizullina ◽  
M.V. Bobkova ◽  
A.S. Arakelyan ◽  
...  

Introduction. Female patients with Mayer–Rokitansky–Küster–Hauser syndrome (MRKH) have high stigma scores; the condition severely affects the reproductive system. The study aimed at specification of morphological features and assessment of the maturity of connective tissues of the uterine rudiments in MRKH. Patients and methods. The study included 42 patients with vaginal and uterine aplasia having functioning uterine rudiments and 47 patients of the control group without genital malformations. Age of the patients was 20-24 years in 67.2% of the cases, and 31.2% of the patients were aged ≤ 19, inclusive. Immunohistochemi-cal assay was applied to determine expression levels of collagen I, collagen III, ММР2, ММР9, TIMP1, fibronectin and laminin proteins within the functioning uterine rudiments in comparison with levels of the same proteins in normally developed uterine tissues. Results. Decreased expression of collagen type I and elevated levels of MMP2 and MMP9 proteins in uterine tissues were observed for the group of patients with MRKH. Conclusions. 1) Uterine rudiments in patients with MRKH show variable degree of morphological similarity with the normally developed uterus; 2) The functioning uterine rudiments are subject to the same pathological processes as the normally developed uterus (myoma, endometriosis). 3) The functioning uterine rudiments in patients with MRKH show altered patterns of connective tissue remodeling, with decreased expression of collagen type I and increased expression of matrix metalloproteinases MMP2 and MMP9. Keywords: Müllerian aplasia, uterine rudiments, metalloproteinases, connective tissue remodeling, ММР2, ММР9


Sign in / Sign up

Export Citation Format

Share Document