A cascaded scheme for high-performance estimation of vehicle states

Author(s):  
Jianfeng Chen ◽  
Shulin Hu ◽  
Yicai Ye ◽  
Haoqian Huang ◽  
Reza Langari ◽  
...  

Vehicle active safety control is bonded tightly with the accurate acquirement of vehicle states. This paper presents a cascaded scheme to realize high-performance estimation of vehicle states. To achieve the estimation with good performance, an adaptive sliding mode observer is designed for determining four longitudinal tire forces independently, and the Kalman filter is used for alleviating the inherent chattering effect. On this basis, lateral tire forces are calculated via a simplified formula based on the Dugoff tire model. Lastly, utilizing the obtained tire force information, the key states of vehicle motion are estimated through the smooth variable structure filter. Numerical experiments are conducted to testify the effectiveness of the presented estimation scheme. The results of performance comparison in different case studies show that the chattering effect can be suppressed to a great extent, and the accuracy, robustness and real-time performance to modeling uncertainty and unexpected measurements can be effectively guaranteed for vehicle state estimation by means of the proposed scheme.

Author(s):  
Aghil Jafari ◽  
Reza Monfaredi ◽  
Mehdi Rezaei ◽  
Ali Talebi ◽  
Saeed Shiry Ghidary

In the present paper, the objective of hybrid impedance control is specified and a robust hybrid impedance control approach is proposed. Based on the concept of hybrid control, the task space is decomposed into position and force controlled subspaces. Impedance control is used in the position controlled subspace. Desired inertia and damping are applied in the force controlled subspace to meliorate the dynamic behavior of robot manipulator. Robust controller using the variable structure model reaching control (VSMRC) is introduced that can realize the objective impedance in the sliding mode in finite time. In order to overcome the chattering effect due to sliding mode approach, fuzzy logic methodology is employed in the control system. In addition, the reaching transient response is undertaken with prescribed quality. Simulating the control system for a 6DOF PUMA560 robot confirms the validity and effectiveness of the proposed control system.


2013 ◽  
Vol 313-314 ◽  
pp. 15-19
Author(s):  
Guo Lin Che ◽  
Hua Lai

For getting the High-performance electric vehicle control which has good dynamic, static characteristics and robustness, a direct torque control strategy of fuzzy sliding mode variable structure was designed to IPM motor. The method changes torque ripple, speed overshoot, poor anti-disturbance ability of the conventional DTC, and weakened the serious chatting which existed in sliding mode variable structure control. The simulation results show the feasibility and effectiveness.


2012 ◽  
Vol 229-231 ◽  
pp. 2170-2173
Author(s):  
Zhi Feng Zhang ◽  
Bao Dong Bai ◽  
Guo Xin Zhao

A sliding mode controller for flux-switching permanent magnet (FSPM) motor is investigated in this paper, in which direct torque control (DTC) concept, variable structure control are integrated to achieve high performance. Then, an FNN is investigated to optimize the control gain matrix of sliding mode controller. The theoretical analyses for the proposed FNN sliding-mode controller are described in detail. Simulation results show that the proposed FNN sliding-mode controller provides low torque ripple and the chattering phenomenon is much reduced.


Author(s):  
Dereje Shiferaw ◽  
Anamika Jain ◽  
R. Mitra

This paper presents the design and analysis of a high performance robust controller for the Stewart platform manipulator. The controller is a variable structure controller that uses a linear sliding surface which is designed to drive both tracking and synchronization errors to zero. In the controller the model based equivalent control part of the sliding mode controller is computed in task space and the discontinuous switching controller part is computed in joint space and hence it is a hybrid of the two approaches. The hybrid implementation helps to reduce computation time and to achieve high performance in task space without the need to measure or estimate 6DOF task space positions. Effect of actuator friction, backlash and parameter variation due to loading have been studied and simulation results confirmed that the controller is robust and achieves better tracking accuracy than other types of sliding mode controllers and simple PID controller.


Author(s):  
Dereje Shiferaw ◽  
Anamika Jain ◽  
R. Mitra

This paper presents the design and analysis of a high performance robust controller for the Stewart platform manipulator. The controller is a variable structure controller that uses a linear sliding surface which is designed to drive both tracking and synchronization errors to zero. In the controller the model based equivalent control part of the sliding mode controller is computed in task space and the discontinuous switching controller part is computed in joint space and hence it is a hybrid of the two approaches. The hybrid implementation helps to reduce computation time and to achieve high performance in task space without the need to measure or estimate 6DOF task space positions. Effect of actuator friction, backlash and parameter variation due to loading have been studied and simulation results confirmed that the controller is robust and achieves better tracking accuracy than other types of sliding mode controllers and simple PID controller.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Mohammad Al-Shabi ◽  
Saeid Habibi

The smooth variable structure filter (SVSF) is a recently proposed predictor-corrector filter for state and parameter estimation. The SVSF is based on the sliding mode control concept. It defines a hyperplane in terms of the state trajectory and then applies a discontinuous corrective action that forces the estimate to go back and forth across that hyperplane. The SVSF is robust and stable to modeling uncertainties making it suitable for fault detection application. The discontinuous action of the SVSF results in a chattering effect that can be used to correct modeling errors and uncertainties in conjunction with adaptive strategies. In this paper, the SVSF is complemented with a novel parameter estimation technique referred to as the iterative bi-section/shooting method (IBSS). This combined strategy is used for estimating model parameters and states for systems in which only the model structure is known. This combination improves the performance of the SVSF in terms of rate of convergence, robustness, and stability. The benefits of the proposed estimation method are demonstrated by its application to an electrohydrostatic actuator.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1832
Author(s):  
Jinfeng Liu ◽  
Xin Qu ◽  
Herbert Ho-Ching Iu

Low-voltage and high-current direct current (DC) power supplies are essential for aerospace and shipping. However, its robustness and dynamic response need to be optimized further on some special occasions. In this paper, a novel rectification system platform is built with the low-voltage and high-current permanent magnet synchronous generator (PMSG), in which the DC voltage double closed-loop control system is constructed with the backstepping control method and the sliding mode variable structure (SMVS). In the active component control structure of this system, reasonable virtual control variables are set to obtain the overall structural control variable which satisfied the stability requirements of Lyapunov stability theory. Thus, the fast-tracking and the global adjustment of the system are realized and the robustness is improved. Since the reactive component control structure is simple and no subsystem has to be constructed, the SMVS is used to stabilize the system power factor. By building a simulation model and experimental platform of the 5 V/300 A rectification module based on the PMSG, it is verified that the power factor of the system can reach about 98.5%. When the load mutation occurs, the DC output achieves stability again within 0.02 s, and the system fluctuation rate does not exceed 2%.


Sign in / Sign up

Export Citation Format

Share Document