scholarly journals Metal Fibre Reinforced Composite – Potentialities and Tasks

2009 ◽  
Vol 18 (2) ◽  
pp. 096369350901800 ◽  
Author(s):  
S. Schmeer ◽  
M. Steeg ◽  
M. Maier ◽  
P. Mitschang

Steel fibres and Twintex® materials were prepared by compaction with a continuous compression molding press, equipped with temperature and pressure controlled plates. The material itself was observed by SEM analysis and mechanical properties were examined by different material tests. In spite of a non perfect interface and bonding the mechanical properties such as stiffness and strength were increased by adding steel fibres to Twintex® material. Even the specific values of stiffness and absorbed energy could be enhanced considerably.

2015 ◽  
Vol 766-767 ◽  
pp. 167-172 ◽  
Author(s):  
R. Bhoopathi ◽  
C. Deepa ◽  
G. Sasikala ◽  
M. Ramesh

Due to desirable properties and its role of natural and manmade fibers reinforced composite materials are growing in a faster rate in the field of engineering and technology. Now-a-days the treated natural composites are serves better in terms of corrosive resistance, and other desirable properties when compared to the traditional materials. The main aim of this experimental study is to fabricate and investigate the mechanical properties such as tensile strengths, flexural strengths and impact strengths of NaOH treated and hemp-banana-glass fibers reinforced hybrid composites. From the experimental results, it has been noted that the treated hemp-banana-glass fibers reinforced hybrid epoxy composites exhibited superior properties and used as an alternate material for synthetic fiber reinforced composite materials. Morphological studies are carried out to analyze the interfacial characteristics, internal structures, fiber failure mode and fractured surfaces by using scanning electron microscopy (SEM) analysis.


2019 ◽  
Vol 48 (3) ◽  
pp. 243-248
Author(s):  
Jenarthanan M.P. ◽  
Karthikeyan Marappan ◽  
Giridharan R.

Purpose The need for seeking alternate materials with increased performance in the field of composites revived this research, to prepare and evaluate the mechanical properties of e-glass and aloe vera fiber-reinforced with polyester and epoxy resin matrices. Design/methodology/approach The composites are prepared by hand layup method using E-glass and aloe vera fibers with length 5-6 mm. The resin used in the preparation of composites was epoxy and polyester. Fiber-reinforced composites were synthesized at 18:82 fiber–resin weight percentages. Samples prepared were tested to evaluate its mechanical and physical properties, such as tensile strength, flexural strength, impact strength, hardness and scanning electron microscope (SEM). Findings SEM analysis revealed the morphological features. E-glass fiber-reinforced epoxy composite exhibited better mechanical properties than other composite samples. The cross-linking density of monomers of the epoxy resin and addition of the short chopped E-glass fibers enhanced the properties of E-glass epoxy fiber-reinforced composite. Originality/value This research work enlists the properties of e-glass and aloe vera fiber-reinforced with polyester and epoxy resin matrices which has not been attempted so far.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2636
Author(s):  
Petr Valášek ◽  
Miroslav Müller ◽  
Vladimír Šleger ◽  
Viktor Kolář ◽  
Monika Hromasová ◽  
...  

Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources. The experimental program itself follows pronounced hypotheses and focuses on a description of the mechanical properties of untreated and alkali-treated natural vegetable fibers, coconut and abaca fibers. These fibers have great potential for use in composite materials. The results and discussion sections contribute to an introduction of an individual methodology for mechanical property assessment of cellulose fibers, and allows for a clear definition of an optimal process of alkalization dependent on the content of hemicellulose and lignin in vegetable fibers. The aim of this research was to investigate the influence of alkali treatment on the surface microstructure and tensile properties of coir and abaca fibers. These fibers were immersed into a 5% solution of NaOH at laboratory temperature for a time interval of 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h, and 48 h, rinsed and dried. The fiber surface microstructures before and after the alkali treatment were evaluated by SEM (scanning electron microscopy). SEM analysis showed that the alkali treatment in the NaOH solution led to a gradual connective material removal from the fiber surface. The effect of the alkali is evident from the visible changes on the surface of the fibers.


2021 ◽  
Vol 5 (2) ◽  
pp. 48
Author(s):  
Yuxuan Wang ◽  
Yuke Zhong ◽  
Qifeng Shi ◽  
Sen Guo

Thermoplastic starch/butyl glycol ester copolymer/polylactic acid (TPS/PBSA/PLA) biodegradable composites were prepared by melt-mixing. The structure, microstructure, mechanical properties and heat resistance of the TPS/PBSA/PLA composites were studied by Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), tensile test and thermogravimetry tests, respectively. The results showed that PBSA or PLA could bind to TPS by hydrogen bonding. SEM analysis showed that the composite represents an excellent dispersion and satisfied two-phase compatibility when the PLA, TPS and PBSA blended by a mass ration of 10, 30, and 60. The mechanical properties and the heat resistance of TPS/PBSA/PLA composite were improved by adding PLA with content less than 10%, according to the testing results.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1473
Author(s):  
Jun Zhao ◽  
Kang Wang ◽  
Shuaibin Wang ◽  
Zike Wang ◽  
Zhaohui Yang ◽  
...  

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C–S–H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.


Author(s):  
A Miranda ◽  
M Leite ◽  
L Reis ◽  
E Copin ◽  
MF Vaz ◽  
...  

The aerospace, automotive, and marine industries are heavily reliant on sandwich panels with cellular material cores. Although honeycombs with hexagonal cells are the most commonly used geometries as cores, recently there have been new alternatives in the design of lightweight structures. The present work aims to evaluate the mechanical properties of metallic and polymeric honeycomb structures, with configurations recently proposed and different in-plane orientations, produced by additive and subtractive manufacturing processes. Structures with configurations such as regular hexagonal honeycomb (Hr), lotus (Lt), and hexagonal honeycomb with Plateau borders (Pt), with 0°, 45°, and 90° orientations were analyzed. To evaluate its properties, three-point bending tests were performed, both experimentally and by numerical modeling, by means of the finite element method. Honeycombs of two aluminum alloys and polylactic acid were fabricated. The structures produced in aluminum were obtained either by selective laser melting technology or by machining, while polylactic acid structures were obtained by material extrusion using fused filament fabrication. From the stress distribution analysis and the load–displacement curves, it was possible to evaluate the strength, stiffness, and absorbed energy of the structures. Failure modes were also analyzed for polylactic acid honeycombs. In general, a strong correlation was observed between numerical and experimental results. The results show that the stiffness and absorbed energy increase in the order, Hr, Pt, Lt, and with the orientation through the sequence, 45°, 90°, 0°. Thus, Lt structures with 0° orientation seem to be good alternatives to the traditional honeycombs used in sandwich composite panels for those industrial applications where low weight, high stiffness, and large energy-absorbing capacity are required.


2010 ◽  
Vol 177 ◽  
pp. 447-450 ◽  
Author(s):  
Xin Zhang ◽  
Yi Wen Hu ◽  
Yin Wu ◽  
Wen Jie Si

The purpose of this study was to evaluate the crystal phase formation behavior and its influence on the mechanical properties of LiO2-SiO2-P2O5 glass-ceramics system. High temperature XRD was used to analyze the crystal phase formation in situ. The crystalline phases in the material both before and after heat-treatment were also analyzed. The flexural strength was measured by three-point bending test according to ISO 6872:2008(E). The SEM analysis showed that the high strength of the glass-ceramics is attributed to the continuous interlocking microstructure with fine lithium disilicate crystallines.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
In-Jin Shon ◽  
In-Yong Ko ◽  
Seung-Hoon Jo ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
...  

Nanopowders of 3NiAl and Al2O3were synthesized from 3NiO and 5Al powders by high-energy ball milling. Nanocrystalline Al2O3reinforced composite was consolidated by high-frequency induction-heated sintering within 3 minutes from mechanochemically synthesized powders of Al2O3and 3NiAl. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. The relative density of the composite was 97%. The average Vickers hardness and fracture toughness values obtained were 804 kg/mm2and 7.5 MPa⋅m1/2, respectively.


Author(s):  
Jianxiang Wang ◽  
Niels B. Thomsen ◽  
Bhushan L. Karihaloo

Abstract This paper will demonstrate on two advanced materials — a fibre-reinforced composite laminate (FRC) and a transformation toughened ceramic (TTC) — the importance of multicriterion optimization in the production of useful advanced materials with enhanced mechanical properties. In a previous paper (Thomsen et al., 1994a), the authors have demonstrated the application of single-criterion optimization to these materials which are based on a brittle matrix and thus prone to cracking at very low applied stresses. The optimization process aims at altering their microstructure so that all their desirable mechanical properties are enhanced. Currently, the advanced materials technologists must take a heuristic approach to meeting the often competing requirements. The present paper will show how multicriterion optimization can come to the aid of the technologists and reduce their reliance on empirical approaches.


Sign in / Sign up

Export Citation Format

Share Document