Effect of maleic anhydride grafted polylactic acid concentration on mechanical and thermal properties of thermoplasticized starch filled polylactic acid blends

2021 ◽  
pp. 096739112110041
Author(s):  
Shakti Chauhan ◽  
N Raghu ◽  
Anand Raj

Polylactic acid (PLA) is blended with native starch or thermo plasticized starch (TPS) for preparing biodegradable composites. However, poor compatibility of PLA with starch results in the composites with inferior mechanical properties. This study examines the effect of Maleic Anhydride-Grafted-PLA (GMAPLA) coupling agent and its concentration on the extent of improvements in mechanical and thermal properties of PLA –TPS blends. Maleic anhydride was grafted on PLA in Haake torque rheometer, characterized and used as the coupling agent. PLA/TPS (wt/wt) blends (70/30 and 50/50) were prepared by twin screw extrusion. GMAPLA at three different levels 5%, 10% and 15% (wt%) with respect to PLA content was taken to study its effect on mechanical properties of blends. Presence of GMAPLA significantly improved the mechanical properties (tensile, flexural and impact strength) of TPS/PLA blends. Among the three concentrations, 10% GMAPLA in the blend was found to give the maximum improvement in strength properties. Dynamic mechanical analysis and thermo-gravimetric analysis indicated no significant effect of GMAPLA content on transition temperatures and thermal degradation behavior of the blends.

2018 ◽  
Vol 33 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Patrycja Bazan ◽  
Stanisław Kuciel ◽  
Mariola Sądej

The work has evaluated the possibility of the potential reinforcing of poly(oxymethylene) (POM) by basalt fibers (BFs) and influence of BFs addition on thermal properties. Two types of composites were produced by injection molding. There were 20 and 40 wt% long BFs content with an average length of 1 mm. The samples were made without using a compatibilizer. In the experimental part, the basic mechanical properties (tensile strength, modulus of elasticity, strain at break, flexural modulus, flexural strength, and deflection at 3.5% strain) of composites based on POM were determined. Tensile properties were also evaluated at three temperatures −20°C, 20°C, and 80°C. The density and Charpy impact of the produced composites were also examined. The influence of water absorption on mechanical properties was investigated. Thermal properties were conducted by the differential scanning calorimetry, thermal gravimetric analysis, and fourier transform infrared (FTIR)-attenuation total reflection (ATR) spectroscopy analysis. In order to make reference to the effects of reinforcement and determine the structure characteristics, scanning electron microscopy images were taken. The addition of 20 and 40 wt% by weight of fibers increases the strength and the stiffness of such composites by more than 30–70% in the range scale of temperature. Manufactured composites show higher thermal and dimensional stability in relation to neat POM.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Chern Chiet Eng ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Hidayah Ariffin ◽  
Wan Md. Zin Wan Yunus ◽  
...  

The effects of hydrophilic nanoclay, Nanomer PGV, on mechanical properties of Polylactic Acid (PLA)/Polycaprolactone (PCL) blends were investigated and compared with hydrophobic clay, Montmorillonite K10. The PLA/PCL/clay composites were prepared by melt intercalation technique and the composites were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). FTIR spectra indicated that formation of hydrogen bond between hydrophilic clay with the matrix. XRD results show that shifting of basal spacing when clay incorporated into polymer matrix. TEM micrographs reveal the formation of agglomerate in the composites. Based on mechanical properties results, addition of clay Nanomer PGV significantly enhances the flexibility of PLA/PCL blends about 136.26%. TGA showed that the presence of clay improve thermal stability of blends. DMA show the addition of clay increase storage modulus and the presence of clay Nanomer PGV slightly shift two Tg of blends become closer suggest that the presence of clay slightly compatibilizer the PLA/PCL blends. SEM micrographs revealed that presence of Nanomer PGV in blends influence the miscibility of the blends. The PLA/PCL blends become more homogeneous and consist of single phase morphology.


2011 ◽  
Vol 374-377 ◽  
pp. 1426-1429
Author(s):  
Xiao Meng Guo ◽  
Jian Qiang Li ◽  
Xian Sen Zeng ◽  
De Dao Hong

In this study, the thermal properties of a kind of new geotextile materials, so called controlled permeable formwork (CPF), were studied. Thermo-gravimetric analysis showed that the weight of CPF didn’t change much between 0~350 °C. Dynamic mechanical analysis showed that the storage modulus of CPF reduced from 25 MPa to around 10 MPa when the temperature rose to above 100 °C. The strength of sample decreased slightly with the increase of the temperature. The breaking elongation changed slightly with a maximum at 80 °C. The CPF showed excellent thermal stability and was suitable for general use in construction work.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Usman Saeed ◽  
Sami Ullah Rathur ◽  
Hamad AlTuraif ◽  
Hisham Bamufleh

The nanocellulose fibril produced by using natural sources can be used in developing sustainable and green products. The useful features of nanocellulose fibril can include valuable physical properties, appropriate surface chemistry, low toxicity, and biocompatibility. The study presented shows the use of polylactic acid with five different percentages of nanocellulose fibril and the use of 3% maleic anhydride as a coupling agent. The maleic anhydride acts as coupling agent which improves the thermochemical and thermomechanical characteristics of the end product. The addition of 3% maleic anhydride as coupling agent with 10% nanocellulose fibril improved the impact strength up to 14.3%, elastic modulus up to 40.6%, and tensile strength up to 30.1%. Furthermore, the dynamic mechanical analysis result indicates that the inclusion of maleic anhydride improved the toughness by reducing the tan δ peak and increases the storage modulus. Finally, the scanning electron micrograph shows that the interfacial compatibility between nanocellulose fibril and polylactic acid matrix is improved with the addition of maleic anhydride.


2013 ◽  
Vol 812 ◽  
pp. 187-191 ◽  
Author(s):  
Nur Izzati Zulkifli ◽  
Noorasikin Samat

Recycled polypropylene/microcrystalline cellulose (rPP/MCC) composites were prepared by adding different loadings of maleic anhydride grafted polypropylene (MAPP) coupling agent. The tensile, impact and morphological properties of the composites were investigated. The obtained results show that the tensile and impact strengths of the composites were significantly enhanced with the addition of MAPP loading from 2 to 5 wt%, as compared with unfilled rPP/MCC composites. However, it was found that at low filler content, different amounts of MAPP resulted in no appreciable change in the tensile strength and modulus. Moreover, dynamic mechanical analysis (DMA) results indicated that, increasing the amount of MAPP loading from 2 to 5 wt% in rPP/MCC provide better stiffness of the composite compared to those neat rPP and neat PP. Field emission scanning microscopy (FESEM) has shown that the composite, with MAPP loading, promotes better fibermatrix interaction.


2015 ◽  
Vol 764-765 ◽  
pp. 107-110 ◽  
Author(s):  
Ming Ming Yu ◽  
Bin Feng ◽  
Min Yang ◽  
Li Qi Liu ◽  
Hong Li ◽  
...  

In order to improve the toughness of the cured aromatic tetrafunctional epoxy resins in the premise of influencing the thermal properties as little as possible, the aromatic tetrafunctional epoxy named N,N,N’,N’-tetraglycidyl-4,4’-diaminodiphenyl ether (TGDDE) was modified by a dimer carboxylic acid (DFA), and then the epoxies were cured with methyl nadic anhydride (MNA). In the present work, the toughness was characterized with the impact resistance tested by pendulum impact testing. Besides, the thermal properties of the cured epoxy resin were investigated with the thermo-gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The impact testing results indicated that the toughness of the cured resins could be improved after the modification and increased with the increasing content of DFA. The thermal analysis showed that the thermal properties of the cured resins were not influenced obviously since the thermal stabilities of the products could be improved and the glass transition temperature of them were not influenced obviously when the tetrafunctional epoxy modified with appropriate content of DFA.


Biotecnia ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 67-73
Author(s):  
Heidy Burrola-Núñez ◽  
Pedro Jesús Herrera-Franco ◽  
Herlinda Soto-Valdez ◽  
Dora Evelia Rodríguez-Félix ◽  
Rodrigo Meléndrez-Amavizca ◽  
...  

El aprovechamiento de residuos agroindustriales es una opción que beneficia al medio ambiente. Durante la elaboración de productos con fibras tejidas de yute (FTY) se generan fragmentos, los cuales no tienen un uso específico. En este trabajo, se propone la utilización de residuos de FTY como material de refuerzo en láminas de ácido poliláctico (PLA), como una alternativa ecológica y sustentable de obtener biocompuestos biodegradables a bajo costo que puedan sustituir a los plásticos provenientes del petróleo. Con el objetivo de mejorar la compatibilidad de las FTY y el PLA se utilizaron tratamientos fisicoquímicos en las fibras como la irradiación gamma (IG) y la funcionalización con anhídrido maleico (AM). Los resultados de los biocompuestos de PLA/ FTY (AM) revelaron mejoras en las propiedades mecánicas y térmicas comparadas con el PLA puro; con un incremento en los módulos elástico, de flexión y almacenamiento del 48%, 6% y 23 %, respectivamente. Esto entreabre la posible aplicación de los biocompuestos de PLA/FTY en envases rígidos, así como el camino para el aprovechamiento de otras fibras naturales usadas localmente.ABSTRACTThe use of agroindustry waste is an option that benefits the environment. During the production of products with woven jute fibers (WJF) fragments are generated which do not have a specific use. In this work, we propose the use of WJF residues as a reinforcing material in laminates of polylactic acid (PLA) as an ecological and sustainable alternative to obtain low cost biodegradable biocomposites that can replace petroleum plastics. In order to improve the WJF and PLA compatibility, physicochemical treatments were used in fibers such as gamma irradiation (GI) and functionalization with maleic anhydride (MA). The results of PLA/WJF (MA) biocomposites revealed improvements in the mechanical and thermal properties compared to neat PLA; with an increase in elastic, flexural and storage modules of 48%, 6%, and 23%, respectively. This opens up the possible application of PLA/ WJF biocomposites in rigid containers, as well as the way to take advantage of other natural fibers used locally.


2009 ◽  
Vol 79-82 ◽  
pp. 2027-2030 ◽  
Author(s):  
Poonsub Threepopnatkul ◽  
Chanin Kulsetthanchalee ◽  
K. Bunmee ◽  
N. Kliaklom ◽  
W. Roddouyboon

This research was to study the related mechanical and thermal properties of recycled polypropylene from post consumer containers reinforced with coir fiber. Surface of coir fiber was treated with sodium hydroxide to remove lignin and hemicelluloses and likely to improve the interfacial adhesion in the composites. The composites of treated coir fiber and recycled polypropylene were prepared by varying the coir fiber contents at 5%, 10% and 20% by weight using a twin screw extruder. The thermal properties were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimeter (DSC). The results from TGA showed that thermal stability of the composites was lower than that of recycled polypropylene resin and thermal stability decreased with increasing coir fiber content. From DSC results, it indicated that the crystallinity of treated coir fiber composites increased as a function of fiber content. The mechanical properties of injection-molded samples were studied by universal testing machine. The treated coir fiber composites produced enhanced mechanical properties. The tensile strength, tensile modulus and impact strength of modified coir fiber/recycled polypropylene composites increased as a function of coir fiber content.


2012 ◽  
Vol 488-489 ◽  
pp. 638-642 ◽  
Author(s):  
Tanawat Tayommai ◽  
Duangdao Aht-Ong

Biodegradable plastic reinforced natural fiber composites are finding applications in many fields ranging from construction industry to food industry. The use of natural bio based fillers as reinforcements in composites has several advantages over inorganic fillers including lower density, renewability, and biodegradability. In this research, polylactic acid (PLA)/ microcrystalline cellulose (MCC) composites were investigated as a means to reduce the material cost and enhance the material properties. The coir fibers were used to prepare microcrystalline. Subsequently, the prepared MCC was treated with 3-amiopropyl triethoxysilane (APS) to improve interfacial adhesion between fiber and polymer matrix. Treated and untreated MCC were then mixed at 0-10 wt.% with PLA by twin-screw extruder and fabricated into test specimens by compression molding. The effects of MCC loading and surface treatment on morphology, mechanical properties, and thermal properties of PLA/MCC composites were investigated. The results showed that the PLA with 5 wt.% of MCC exhibited the best mechanical properties compared with all prepared composites. Thermal stability of PLA composites were decreased with increasing MCC content but it can be improved by treated the MCC with APS.


Sign in / Sign up

Export Citation Format

Share Document