Rice waste–based polymer composites for packaging applications: A review

2021 ◽  
pp. 096739112110467
Author(s):  
Waham Ashaier Laftah ◽  
Wan Aizan Wan Abdul Rahman

Rice wastes are abundant, low-cost, cellulosic-based materials. The potential of using rice waste such as husk, straw, and bran in bio-composite production is a crucial target of the composite industry. Chemical composition is the main factor that offers diverse possible applications of rice wastes in bio-composite-based materials. Eco-friendly products of bio-composite polymers can be produced by reinforcing and filling polymer matrices with high cellulosic content materials such as rice waste. From manufacturing point of view, rice wastes can be used to reduce the production cost of polymer-based products and meet the requirements for green packaging materials.

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2254
Author(s):  
Francisco Javier González-Cañete ◽  
Eduardo Casilari

Over the last few years, the use of smartwatches in automatic Fall Detection Systems (FDSs) has aroused great interest in the research of new wearable telemonitoring systems for the elderly. In contrast with other approaches to the problem of fall detection, smartwatch-based FDSs can benefit from the widespread acceptance, ergonomics, low cost, networking interfaces, and sensors that these devices provide. However, the scientific literature has shown that, due to the freedom of movement of the arms, the wrist is usually not the most appropriate position to unambiguously characterize the dynamics of the human body during falls, as many conventional activities of daily living that involve a vigorous motion of the hands may be easily misinterpreted as falls. As also stated by the literature, sensor-fusion and multi-point measurements are required to define a robust and reliable method for a wearable FDS. Thus, to avoid false alarms, it may be necessary to combine the analysis of the signals captured by the smartwatch with those collected by some other low-power sensor placed at a point closer to the body’s center of gravity (e.g., on the waist). Under this architecture of Body Area Network (BAN), these external sensing nodes must be wirelessly connected to the smartwatch to transmit their measurements. Nonetheless, the deployment of this networking solution, in which the smartwatch is in charge of processing the sensed data and generating the alarm in case of detecting a fall, may severely impact on the performance of the wearable. Unlike many other works (which often neglect the operational aspects of real fall detectors), this paper analyzes the actual feasibility of putting into effect a BAN intended for fall detection on present commercial smartwatches. In particular, the study is focused on evaluating the reduction of the battery life may cause in the watch that works as the core of the BAN. To this end, we thoroughly assess the energy drain in a prototype of an FDS consisting of a smartwatch and several external Bluetooth-enabled sensing units. In order to identify those scenarios in which the use of the smartwatch could be viable from a practical point of view, the testbed is studied with diverse commercial devices and under different configurations of those elements that may significantly hamper the battery lifetime.


Nanoscale ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 2779-2786 ◽  
Author(s):  
Jing Li ◽  
Santiago Orrego ◽  
Junjie Pan ◽  
Peisheng He ◽  
Sung Hoon Kang

We report a facile sacrificial casting–etching method to synthesize nanoporous carbon nanotube/polymer composites for ultra-sensitive and low-cost piezoresistive pressure sensors.


2016 ◽  
Vol 08 (07) ◽  
pp. 1640009 ◽  
Author(s):  
Fengfeng Li ◽  
Liwu Liu ◽  
Xin Lan ◽  
Tong Wang ◽  
Xiangyu Li ◽  
...  

With large spatial deployable antennas used more widely, the stability of deployable antennas is attracting more attention. The form of the support structure is an important factor of the antenna’s natural frequency, which is essential to study to prevent the resonance. The deployable truss structures based on shape memory polymer composites (SMPCs) have made themselves feasible for their unique properties such as highly reliable, low-cost, light weight, and self-deployment without complex mechanical devices compared with conventional deployable masts. This study offers deliverables as follows: an establishment of three-longeron beam and three-longeron truss finite element models by using ABAQUS; calculation of natural frequencies and vibration modes; parameter studies for influence on their dynamic properties; manufacture of a three-longeron truss based on SMPC, and modal test of the three-longeron truss. The results show that modal test and finite element simulation fit well.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1510
Author(s):  
María Ángeles Rivas ◽  
Rocío Casquete ◽  
María de Guía Córdoba ◽  
Santiago Ruíz-Moyano ◽  
María José Benito ◽  
...  

The objective of this study was to evaluate, from a technological and nutritional point of view, the chemical composition and functional properties of the industrial winemaking by-products, namely skins, stems and lees. The chemical and physical characteristics, as well as the functional properties (fat and water retention and swelling capacity, antioxidant capacity, and their prebiotic effect), of the dietary fibre of these by-products were studied. The results showed that the skins, stems, and lees are rich in fibre, with the stem fibre containing the highest amounts of non-extractable polyphenols attached to polysaccharides with high antioxidant activity and prebiotic effect. Lee fibre had the highest water retention capacity and oil retention capacity. The results reveal that winemaking by-products could be used as a source of dietary fibre with functional characteristics for food applications.


2015 ◽  
Vol 24 (4) ◽  
pp. 298-321 ◽  
Author(s):  
Ernesto de la Rubia ◽  
Antonio Diaz-Estrella

Virtual reality has become a promising field in recent decades, and its potential now seems clearer than ever. With the development of handheld devices and wireless technologies, interest in virtual reality is also increasing. Therefore, there is an accompanying interest in inertial sensors, which can provide such advantages as small size and low cost. Such sensors can also operate wirelessly and be used in an increasing number of interactive applications. An example related to virtual reality is the ability to move naturally through virtual environments. This is the objective of the real-walking navigation technique, for which a number of advantages have previously been reported in terms of presence, object searching, and collision, among other concerns. In this article, we address the use of foot-mounted inertial sensors to achieve real-walking navigation in a wireless virtual reality system. First, an overall description of the problem is presented. Then, specific difficulties are identified, and a corresponding technique is proposed to overcome each: tracking of foot movements; determination of the user’s position; percentage estimation of the gait cycle, including oscillating movements of the head; stabilization of the velocity of the point of view; and synchronization of head and body yaw angles. Finally, a preliminary evaluation of the system is conducted in which data and comments from participants were collected.


Author(s):  
V.N. Yefanov ◽  
◽  
E.V. Mitusova ◽  

The blue honeysuckle is the earliest ripening berry, which ripens 7–10 days earlier than the garden strawber-ries under the conditions of Sakhalin's climate. It is resistant to lower fungi and parasites and can be cultivat-ed without pesticides. Currently, many honeysuckle varieties with fruits of different morphologies and chemical composition have been bred. We analyzed values of economically valuable indicators and chemical composition in 14 varieties of honeysuckle, which grow in the monsoon climate of Sakhalin. To assess the most productive variety, the values of each character were presented as percentage of the maximum for each indicator. Knowing the total values of characters under investigation made it possible to choose the best va-rieties, from authors` point of view, to grow in the household gardens in the monsoon climate of Sakhalin: from the Pavlovsk Experimental Station of Vavilov Institute of Plant Industry – Leningradsky giant (506.4%), Berel (432.9%) and Viola (423.4%).


2000 ◽  
Author(s):  
M. P. Koster

Abstract The application of flexural joints in mechanisms has a number of advantages. Extreme repeatability of position is obtained because of the absence of backlash and friction. From a tribological point of view, no lubrication is needed and no wear exists. In many cases their application gives rise to a low cost assembly. Flexural elements have their particular drawbacks as well. Deflections are limited; only oscillating motions can be performed and work has to be done as a consequence of the elastic deflection. Flexural fatigue sets another limit to their application. The paper gives an overview of a design methodology that has been developed at the Philips Center for Industrial Technology by the author and his colleagues over the last several decades. Some aspects of this methodology are well known; other aspects are unique. The methodology is described in detail in a book by the author about design principles (Koster 1998). The methodology has been used to design hundreds of practical mechanisms incorporated in scientific instruments, manufacturing equipment and consumer goods. Many examples are given in (Koster 1998). Several interesting examples are given in this paper.


2021 ◽  
Vol 13 (4) ◽  
pp. 105-119
Author(s):  
Gang-Hoon Seo

Since Southwest Airlines' disruptive innovation was introduced, low-cost carriers (LCCs) have had a prominent impact on the aviation industry. Therefore, considerable attention has been paid to the LCC model. However, it is still not clear whether it is a successful disruptive innovation, or what factors and differentiation points for successful LCC service exist from the passengers' perspective. As this study's methodology, quantitative and qualitative content analyses are conducted using the word-of-mouth data of 1,854 passengers of 20 airlines. This study found that the LCC model is perceived as a successful disruptive innovation from the passengers' point of view. For successful LCC service, LC airlines should offer higher quality services than passengers' expectations using basic service elements. Also, good staff characteristics, leaving a professional impression, and providing good optional services could play a role as differentiation tools.


Sign in / Sign up

Export Citation Format

Share Document