scholarly journals Retrospective analysis of infectious laryngotracheitis in backyard chicken flocks in California, 2007–2017, and determination of strain origin by partial ICP4 sequencing

2019 ◽  
Vol 31 (3) ◽  
pp. 350-358 ◽  
Author(s):  
Julia Blakey ◽  
Simone Stoute ◽  
Beate Crossley ◽  
Aslı Mete

Infectious laryngotracheitis (ILT) can cause severe losses in backyard flocks (BYFs) and commercial poultry. The prevalence of ILT, the circulating strains of ILT virus (ILTV) in BYFs, and the correlation of disease in BYF and commercial operations, is largely unknown. Of 8,656 BYF submissions, 88 cases of ILT were diagnosed at the California Animal Health and Food Safety Laboratory System in 2007–2017. ILT diagnosis by year varied from 0.19% to 1.7% of the total BYF submissions, with the highest number of cases submitted from Amador and Riverside counties. Moderate tracheitis, conjunctivitis, and occluded tracheal lumen were commonly reported gross anatomic lesions. Microscopically, inflammation and edema were observed in the trachea, lung, and conjunctiva; 62 (70%) cases had intranuclear inclusion bodies (INIBs), with 10 cases containing INIBs only in conjunctival sections. To analyze the circulating ILTV strains and to differentiate between field and vaccine strains of ILTV, real-time PCR and sequencing of 996 base pairs of the infected-cell polypeptide 4 ( ICP4) gene was performed on 15 ILTV-positive tracheal samples and compared to reference field and vaccine ILTV ICP4 sequences in GenBank. Fourteen strains were identical or closely related to the chicken embryo origin live virus vaccine strains, and one strain was closely related to a Chinese isolate, the USDA reference strain, and a vaccine strain. The presence of ILT in BYFs in counties with high commercial poultry concentrations demonstrates a risk for disease transmission and emphasizes the importance of continued surveillance and improved biosecurity in BYFs.

2018 ◽  
Vol 30 (3) ◽  
pp. 471-475 ◽  
Author(s):  
Kristin A. Clothier ◽  
Peony Kim ◽  
Aslı Mete ◽  
Ashley E. Hill

Backyard poultry operations are increasingly popular and commonplace in both rural and suburban locations. Although Salmonella surveillance programs are well established for large commercial poultry systems, information on smaller operations is lacking. We identified the occurrence and serotype distribution of Salmonella spp. recovered from backyard flock cases submitted to the California Animal Health and Food Safety Laboratory System (Davis, CA) in 2012–2015, and evaluated minimum inhibitory concentration for 12 antimicrobials as well as the lesions associated with Salmonella spp. in these cases. From records of 2,347 backyard flock cases with 2,627 samples, 44 samples (1.7%) were positive for Salmonella spp. DNA by PCR, and 41 (1.6%) of these samples yielded a Salmonella isolate by culture for further characterization. Seventeen different serotypes, including 3 isolates identified to the serogroup level, were identified from these isolates. Antimicrobial resistance was infrequent; however, 2 multidrug–resistant isolates were identified. Enteric or systemic lesions associated with Salmonella recovery were uncommon, with 77.3% of cases having no disease attributable to Salmonella. Recovered serotypes overlap with those seen in commercial poultry as well as in foodborne outbreaks reported by the Centers for Disease Control and Prevention in humans. Zoonotic risks via contact and food product contamination make monitoring of backyard flocks for Salmonella a critical part of flock surveillance programs, and we propose a potential sampling scheme.


2019 ◽  
Vol 31 (3) ◽  
pp. 368-370 ◽  
Author(s):  
Anny S. Huang ◽  
Francisco R. Carvallo ◽  
Maurice E. Pitesky ◽  
Simone Stoute ◽  
Aslı Mete

In contrast to conventional commercial poultry, which are raised primarily in controlled indoor environments, backyard poultry are typically raised in less restricted settings, potentially exposing them to a greater variety of ingestible substances, including multiple types of forage. Consequently, problems such as gastrointestinal impactions caused by ingesta have been noted in backyard poultry. To determine the prevalence of these impactions in backyard poultry, we performed a retrospective database search for autopsy submissions to the California Animal Health and Food Safety laboratory system and found that gastrointestinal impaction was associated with the death of 42 backyard poultry cases (40 chickens, 1 turkey, and 1 goose) from January 2013 to July 2018. In 32 of these 42 (76%) cases, the impaction was caused by fibrous plant material, 7 (17%) by compacted feed, and 3 (7%) by miscellaneous ingesta (tortilla, plastic, and wood shavings). The large proportion of grass impactions indicate that foraging is the predominant source of impaction material in backyard poultry, and that long grasses may be a significant health hazard for poultry. Backyard, pasture-raised, and free-range poultry producers are advised to maintain short pastures, avoid feeds that may expand in the gastrointestinal tract, and provide adequate grit to prevent impactions.


2019 ◽  
Vol 31 (3) ◽  
pp. 336-342 ◽  
Author(s):  
Nancy M. Brochu ◽  
Michele T. Guerin ◽  
Csaba Varga ◽  
Brandon N. Lillie ◽  
Marina L. Brash ◽  
...  

Non-commercial poultry flocks (referred to as “small flocks”) have become increasingly popular in Canada. Despite this popularity, little is known about the main causes of morbidity and mortality (health status) in these flocks. We assessed the baseline prevalence of infectious and non-infectious diseases among Ontario’s small poultry flocks by conducting a prospective surveillance study over a 2-y period. With the owner’s consent, for each bird ( n = 245) submitted to the Animal Health Laboratory, we performed a postmortem examination, including ancillary tests to reach a diagnosis. Infectious diseases were the most common primary cause of clinical signs or death (62%), with multifactorial respiratory diseases (21%) and Marek’s disease (11%) being most frequent. Multifactorial respiratory diseases were commonly caused by coinfection with bacteria (e.g., Mycoplasma gallisepticum and M. synoviae, Escherichia coli, Avibacterium spp.) and viruses, such as infectious bronchitis and infectious laryngotracheitis viruses. No federally reportable diseases were diagnosed. The health status of small flocks in Ontario has not been reported previously, to our knowledge, and the data presented herein will produce helpful baseline information for the development of technology transfer material directed to owners and veterinarians, which will ultimately aid in the control of diseases among these flocks.


2021 ◽  
Vol 33 (2) ◽  
pp. 336-339
Author(s):  
Julia Blakey ◽  
Carmen Jerry ◽  
Ana da Silva ◽  
Simone Stoute

A 7-y-old backyard Leghorn chicken ( Gallus domesticus) was submitted to the California Animal Health and Food Safety Laboratory System (CAHFS)–Turlock branch for postmortem examination, with a history of unexpected death. At postmortem examination, a hemorrhagic soft tissue mass was observed in the cervical region. Microscopically, a densely cellular neoplasm of polygonal epithelial cells and small lymphocytes was observed. The microscopic features of the neoplasm in combination with positive immunohistochemistry for pancytokeratin and CD3 were used to classify the lesion as a thymoma. Thymoma was diagnosed in only 5 birds submitted to CAHFS from 1990 to 2019. Thymoma has been described only rarely in birds, and is an unusual diagnosis in backyard chickens.


2021 ◽  
Vol 22 (12) ◽  
pp. 6283
Author(s):  
Jérémy Lamarche ◽  
Luisa Ronga ◽  
Joanna Szpunar ◽  
Ryszard Lobinski

Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eve Afonso ◽  
Rong Fu ◽  
Amaël Dupaix ◽  
Anne-Claude Goydadin ◽  
ZhongHua Yu ◽  
...  

AbstractAn increasing number of studies have found that the implementation of feeding sites for wildlife-related tourism can affect animal health, behaviour and reproduction. Feeding sites can favour high densities, home range overlap, greater sedentary behaviour and increased interspecific contacts, all of which might promote parasite transmission. In the Yunnan snub-nosed monkey (Rhinopithecus bieti), human interventions via provisioning monkeys at specific feeding sites have led to the sub-structuring of a group into genetically differentiated sub-groups. The fed subgroup is located near human hamlets and interacts with domesticated animals. Using high-throughput sequencing, we investigated Entamoeba species diversity in a local host assemblage strongly influenced by provisioning for wildlife-related tourism. We identified 13 Entamoeba species or lineages in faeces of Yunnan snub-nosed monkeys, humans and domesticated animals (including pigs, cattle, and domestic chicken). In Yunnan snub-nosed monkeys, Entamoeba prevalence and OTU richness were higher in the fed than in the wild subgroup. Entamoeba polecki was found in monkeys, pigs and humans, suggesting that this parasite might circulates between the wild and domestic components of this local social–ecological system. The highest proportion of faeces positive for Entamoeba in monkeys geographically coincided with the presence of livestock and humans. These elements suggest that feeding sites might indirectly play a role on parasite transmission in the Yunnan snub-nosed monkey. The implementation of such sites should carefully consider the risk of creating hotspots of disease transmission, which should be prevented by maintaining a buffer zone between monkeys and livestock/humans. Regular screenings for pathogens in fed subgroup are necessary to monitor transmission risk in order to balance the economic development of human communities dependent on wildlife-related tourism, and the conservation of the endangered Yunnan snub-nosed monkey.


Biochemistry ◽  
1976 ◽  
Vol 15 (20) ◽  
pp. 4370-4377 ◽  
Author(s):  
P. H. Bolton ◽  
C. R. Jones ◽  
D. Bastedo-Lerner ◽  
K. L. Wong ◽  
D. R. Kearns

2018 ◽  
Vol 30 (5) ◽  
pp. 784-788 ◽  
Author(s):  
Manuela Crispo ◽  
C. Gabriel Sentíes-Cué ◽  
George L. Cooper ◽  
Grace Mountainspring ◽  
Charles Corsiglia ◽  
...  

Infectious coryza, caused by Avibacterium paragallinarum, is an acute respiratory disease of poultry that can result in substantial morbidity, mortality, and economic losses. In March 2017, the Turlock branch of the California Animal Health and Food Safety laboratory system encountered an unusual clinical and pathologic presentation of infectious coryza in 6 live, 29-d-old, commercial broiler chickens that were submitted for diagnostic investigation. Antemortem evaluation revealed severe neurologic signs, including disorientation, torticollis, and opisthotonos. Swollen head–like syndrome and sinusitis were also present. Histologically, severe sinusitis, cranial osteomyelitis, otitis media and interna, and meningoencephalitis were noted, explaining the clinical signs described. A. paragallinarum was readily isolated from the upper and lower respiratory tract, brain, and cranial bones. Infectious bronchitis virus (IBV) was also detected by PCR, and IBV was isolated in embryonated chicken eggs. Based on sequencing analysis, the IBV appeared 99% homologous to strain CA1737. A synergistic effect between A. paragallinarum and IBV, resulting in exacerbation of clinical signs and increased mortality, may have occurred in this case. A. paragallinarum should be considered among the possible causes of neurologic signs in chickens. Appropriate media should be used for bacterial isolation, and the role of additional contributing factors and/or complicating agents should be investigated in cases of infectious coryza.


Sign in / Sign up

Export Citation Format

Share Document