Numerical and experimental investigation of damage severity estimation using Lamb wave–based imaging methods

2018 ◽  
Vol 30 (4) ◽  
pp. 618-635 ◽  
Author(s):  
Asaad Migot ◽  
Yeasin Bhuiyan ◽  
Victor Giurgiutiu

In this article, estimation of crack size, shape, and orientation was investigated numerically and experimentally using Lamb waves. A hybrid global–local approach was used in conjunction with the imaging methods for the numerical simulation. The hybrid global–local approach allowed fast and efficient prediction of scattering wave signals for Lamb wave interaction with crack from various incident directions. The simulation results showed the directionality effect of the scattering wave signals and suggested an optimum transmitter–sensor configuration. Two imaging methods were used: one involves the synthetic time reversal concept and the other involves Gaussian distribution function. Both imaging methods show very good agreement during simulations. Experiments were designed and conducted based on the simulated results. A network of eight piezoelectric wafer active sensors was used to capture the scattering waves from the crack. Both the pitch-catch and pulse-echo experimental modes were used. The directionality effect of incident Lamb waves on the imaging results was studied. The effect of summation, multiplication, and combined algorithms for each imaging method was studied. It was found that both methods can successfully predict the crack size and orientation. An attempt was made to use these imaging methods for detecting and sizing smaller sized damage (1- to 3-mm-diameter hole). It was found that these methods can successfully localize the hole, but size estimation was a bit challenging because of the smaller dimensions. The scattering waves for various hole sizes were studied.

2020 ◽  
Vol 12 (16) ◽  
pp. 2641
Author(s):  
Shunjun Wei ◽  
Jiadian Liang ◽  
Mou Wang ◽  
Xiangfeng Zeng ◽  
Jun Shi ◽  
...  

Compressive sensing (CS) has been widely utilized in inverse synthetic aperture radar (ISAR) imaging, since ISAR measured data are generally non-completed in cross-range direction, and CS-based imaging methods can obtain high-quality imaging results using under-sampled data. However, the traditional CS-based methods need to pre-define parameters and sparse transforms, which are tough to be hand-crafted. Besides, these methods usually require heavy computational cost with large matrices operation. In this paper, inspired by the adaptive parameter learning and rapidly reconstruction of convolution neural network (CNN), a novel imaging method, called convolution iterative shrinkage-thresholding (CIST) network, is proposed for ISAR efficient sparse imaging. CIST is capable of learning optimal parameters and sparse transforms throughout the CNN training process, instead of being manually defined. Specifically, CIST replaces the linear sparse transform with non-linear convolution operations. This new transform and essential parameters are learnable end-to-end across the iterations, which increases the flexibility and robustness of CIST. When compared with the traditional state-of-the-art CS imaging methods, both simulation and experimental results demonstrate that the proposed CIST-based ISAR imaging method can obtain imaging results of high quality, while maintaining high computational efficiency. CIST-based ISAR imaging is tens of times faster than other methods.


2019 ◽  
Vol 24 (2) ◽  
pp. 320-326 ◽  
Author(s):  
Wen-Fa Zhu ◽  
Hai-Yan Zhang Zhang ◽  
Meng-Yun Xu ◽  
Guo-Peng Fan

The study investigates the feasibility of the Lamb wave topological imaging method for detecting multiple blindholes in an isotropic plate. The topological imaging method is performed based on the computations of two wave fields, a forward and an adjoint, in the defect-free reference medium using different emitting sources. The image is computed by multiplying the forward and adjoint wave fields together and integrating them over time or frequency. The interferences of multimode aliasing and the scattering effect can thus be eliminated at the defectfree positions with an improved image resolution. To investigate the physical mechanism, the refocusing process of the multimode Lamb waves at the defect positions is presented by a face-to-face comparison between the snapshots of the forward and adjoint wave fields using the finite element simulation. The Lamb wave topological imaging method is numerically and experimentally verified to identify multiple blind-holes in an isotropic aluminium plate. The results demonstrate that the topological imaging method enables the suppression of the sartefacts resulting from the mode conversion and achieve high-resolution imaging of the blind defects


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3502
Author(s):  
Caibin Xu ◽  
Zhibo Yang ◽  
Mingxi Deng

Lamb wave-based structural health monitoring techniques have the ability to scan a large area with relatively few sensors. Lamb wave imaging is a signal processing strategy that generates an image for locating scatterers according to the received Lamb waves. This paper presents a Lamb wave imaging method, which is formulated as a weighted structured sparse reconstruction problem. A dictionary is constructed by an analytical Lamb wave scattering model and an edge reflection prediction technique, which is used to decompose the experimental scattering signals under the constraint of weighted structured sparsity. The weights are generated from the correlation coefficients between the scattering signals and the predicted ones. Simulation and experimental results from an aluminum plate verify the effectiveness of the present method, which can generate images with sparse pixel values even with very limited number of sensors.


2020 ◽  
Vol 10 (16) ◽  
pp. 5664
Author(s):  
Baochun Xu ◽  
Mulan Wang ◽  
Peijuan Li ◽  
Qihua Cheng ◽  
Yunlong Sheng

In the active Lamb wave based monitoring of plate structural health, it is difficult to extract damage information from active Lamb waves based on single sensor collection. Based on the Hilbert–Huang transform (HHT) instantaneous processing method, this paper proposes to study the damage information carried by a single sensor monitoring signal from the instantaneous parameter characteristics of the signal. The instantaneous phase change caused by the phase difference between the damage scattering wave and the direct wave is studied. The change of the marginal spectrum amplitude in the effective range caused by the damage scattering wave is studied in continuous multiple frequency bands. Finally, the damage information extraction based on a single sensor monitoring signal is realized. From the model analysis and experimental results, it is reliable and feasible to realize the active Lamb wave based monitoring of plate structural health according to the instantaneous parameter change characteristics from a single sensor signal.


Author(s):  
Gustavo Henrique B. Donato ◽  
Felipe Cavalheiro Moreira

Fracture toughness and Fatigue Crack Growth (FCG) experimental data represent the basis for accurate designs and integrity assessments of components containing crack-like defects. Considering ductile and high toughness structural materials, crack growing curves (e.g. J-R curves) and FCG data (in terms of da/dN vs. ΔK or ΔJ) assumed paramount relevance since characterize, respectively, ductile fracture and cyclic crack growth conditions. In common, these two types of mechanical properties severely depend on real-time and precise crack size estimations during laboratory testing. Optical, electric potential drop or (most commonly) elastic unloading compliance (C) techniques can be employed. In the latter method, crack size estimation derives from C using a dimensionless parameter (μ) which incorporates specimen’s thickness (B), elasticity (E) and compliance itself. Plane stress and plane strain solutions for μ are available in several standards regarding C(T), SE(B) and M(T) specimens, among others. Current challenges include: i) real specimens are in neither plane stress nor plane strain - modulus vary between E (plane stress) and E/(1-ν2) (plane strain), revealing effects of thickness and 3-D configurations; ii) furthermore, side-grooves affect specimen’s stiffness, leading to an “effective thickness”. Previous results from current authors revealed deviations larger than 10% in crack size estimations following existing practices, especially for shallow cracks and side-grooved samples. In addition, compliance solutions for the emerging clamped SE(T) specimens are not yet standardized. As a step in this direction, this work investigates 3-D, thickness and side-groove effects on compliance solutions applicable to C(T), SE(B) and clamped SE(T) specimens. Refined 3-D elastic FE-models provide Load-CMOD evolutions. The analysis matrix includes crack depths between a/W=0.1 and a/W=0.7 and varying thicknesses (W/B = 4, W/B = 2 and W/B = 1). Side-grooves of 5%, 10% and 20% are also considered. The results include compliance solutions incorporating all aforementioned effects to provide accurate crack size estimation during laboratory fracture and FCG testing. All proposals revealed reduced deviations if compared to existing solutions.


2021 ◽  
Vol 11 (11) ◽  
pp. 5219
Author(s):  
Yosuke Sakurai ◽  
Hirotaka Sato ◽  
Nozomu Adachi ◽  
Satoshi Morooka ◽  
Yoshikazu Todaka ◽  
...  

As a new method for evaluating single crystals and oligocrystals, pulsed neutron Bragg-dip transmission analysis/imaging method is being developed. In this study, a single Bragg-dip profile-fitting analysis method was newly developed, and applied for analyzing detailed inner information in a crystalline grain position-dependently. In the method, the spectrum profile of a single Bragg-dip is analyzed at each position over a grain. As a result, it is expected that changes in crystal orientation, mosaic spread angle and thickness of a perfect crystal can be evaluated from the wavelength, the width and the integrated intensity of the Bragg-dip, respectively. For confirming this effectiveness, the method was applied to experimental data of position-dependent Bragg-dip transmission spectra of a Si-steel plate consisting of oligocrystals. As a result, inner information of multiple crystalline grains could be visualized and evaluated. The small change in crystal orientation in a grain, about 0.4°, could be observed by imaging the Bragg-dip wavelengths. By imaging the Bragg-dip widths, both another grain and mosaic block in a grain were detected. Furthermore, imaging results of the integrated intensities of Bragg-dips were consistent with the results of Bragg-dip width imaging. These small crystallographic changes have not been observed and visualized by previous Bragg-dip analysis methods.


2012 ◽  
Vol 116 (4) ◽  
pp. 697-702 ◽  
Author(s):  
Neil Roundy ◽  
Johnny B. Delashaw ◽  
Justin S. Cetas

Object Facial nerve paresis can be a devastating complication following resection of large (> 2.5 cm) cerebellopontine angle (CPA) tumors. The authors have developed and used a new high-density diffusion tensor imaging (HD-DT imaging) method, aimed at preoperatively identifying the location and course of the facial nerve in relation to large CPA tumors. Their study objective was to preoperatively identify the facial nerve in patients with large CPA tumors and compare their HD-DT imaging method with a traditional standard DT imaging method and correlate with intraoperative findings. Methods The authors prospectively studied 5 patients with large (> 2.5 cm) CPA tumors. All patients underwent preoperative traditional standard- and HD-DT imaging. Imaging results were correlated with intraoperative findings. Results Utilizing their HD-DT imaging method, the authors positively identified the location and course of the facial nerve in all patients. In contrast, using a standard DT imaging method, the authors were unable to identify the facial nerve in 4 of the 5 patients. Conclusions The HD-DT imaging method that the authors describe and use has proven to be a powerful, accurate, and rapid method for preoperatively identifying the facial nerve in relation to large CPA tumors. Routine integration of HD-DT imaging in preoperative planning for CPA tumor resection could lead to improved facial nerve preservation.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668570 ◽  
Author(s):  
Dongsheng Li ◽  
Zihao Jing ◽  
Mengdao Jin

Damage-scattering signal extraction using conventional ultrasonic guided wave–based damage detection techniques requires the measurement of baseline data under pristine condition. This study proposes a baseline-free ultrasonic guided wave damage localization and imaging method based on Lamb wave baseline-free probability imaging method. Although traditional Lamb wave probability imaging can monitor damage location in plate-like structures, the absolute time of arrival and magnitude of the signal are affected by several factors and are therefore difficult to obtain. This study also proposes a probability-based hyperbola diagnostic imaging method that is based on different times of arrival and has no magnitude information. A distributed active sensor network conforming to a pulse-echo configuration and time window functions is developed to separate damage-scattering signals from structural response signals. Continuous wavelet transform is used to calculate the time of flight of damage signal waves. The numerical simulation and experiments validate the effectiveness of the proposed method in identifying damage.


2000 ◽  
Author(s):  
Won-Bae Na ◽  
Tribikram Kundu ◽  
Mohammad R. Ehsani

Abstract The feasibility of detecting interface degradation and separation of steel rebars in concrete beams using Lamb waves is investigated in this paper. It is shown that Lamb waves can easily detect these defects. A special coupler between the steel rebar and ultrasonic transducers has been used to launch non-axisymmetric guided waves in the steel rebar. This investigation shows that the Lamb wave inspection technique is an efficient and effective tool for health monitoring of reinforced concrete structures because the Lamb wave can propagate a long distance along the reinforcing steel bars embedded in concrete as the guided wave and is sensitive to the interface debonding between the steel rebar and concrete.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2745 ◽  
Author(s):  
Ruihua Li ◽  
Hao Li ◽  
Bo Hu

Large generators are the principal pieces of equipment in power systems, and their operation reliability critically depends on the stator insulation. Damages in stator insulation will gradually lead to the failure and breakdown of generator. Due to the advantages of Lamb waves in Structural health monitoring (SHM), in this study, a distributed piezoelectric (PZT) sensor system and hybrid features of the Lamb waves are introduced to identify stator insulation damage of large generator. A hierarchical probability damage-imaging (PDI) algorithm is proposed to tackle the material inhomogeneity and anisotropy of the stator insulation. The proposed method includes three steps: global detection using correlation coefficients, local detection using Time of flight (ToF) along with the amplitude of damage-scattered Lamb wave, and final images fusion. Wavelet Transform was used to extract the ToF of Lamb wave in terms of the time-frequency domain. Finite Element Modeling (FEM) simulation and experimental work were carried out to identify four typical stator insulation damages for validation, including inner void, inner delamination, puncture, and crack. Results show that the proposed method can precisely identify the location of stator insulation damage, and the reconstruction image can be used to identify the size of stator insulation damage.


Sign in / Sign up

Export Citation Format

Share Document