Effects of topical pilocarpine on ocular growth and refractive development in rabbits

2020 ◽  
pp. 112067212093496
Author(s):  
Liyang Tong ◽  
Dongmei Cui ◽  
Junwen Zeng

Purpose: This study aimed to investigate whether topical pilocarpine affects ocular growth and refractive development as well as the underlying biochemical processes in early eye development in rabbits. Methods: Twenty three-week-old New Zealand white rabbits were treated with 0.5% pilocarpine in the right eye for 6 weeks. The left eyes served as contralateral controls. The effects of pilocarpine on refractive error, corneal curvature and ocular biometrics were assessed using streak retinoscopy, keratometry, and A-scan ultrasonography, respectively. Eyeballs were enucleated for histological analysis. The ciliary body and sclera were homogenized to determine the mRNA and protein expression levels of five subtypes of muscarinic receptors. Results: Compared to control eyes, pilocarpine-treated eyes exhibited approximately −1.63 ± 0.54 D myopia accompanied by a 0.11 ± 0.04 mm increase in axial length (AL) ( p < 0.001, respectively). The anterior chamber depth (ACD) was reduced, whereas the lens thickness (LT) and vitreous chamber depth (VCD) increased ( p < 0.001, respectively). Corneal curvature decreased over time but was not significantly different between treated and control eyes. The mRNA and protein expression levels of five subtypes of muscarinic receptors were upregulated in the ciliary body and downregulated in the sclera. Conclusions: Based on these results, pilocarpine can induce myopic shift, increase LT, elongate VCD and AL, and reduce muscarinic receptor expression in the sclera early in development. These changes raise the possibility that pilocarpine may promote axial elongation in ocular development and facilitate the emmetropization of hyperopic eyes.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


2013 ◽  
Vol 61 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Anna Nynca ◽  
Dominika Słonina ◽  
Olga Jablońska ◽  
Barbara Kamińska ◽  
Renata Ciereszko

Daidzein, a phytoestrogen present in soybean products used in swine feed, has been demonstrated to affect both reproductive and endocrine functions. The aims of this study were to examine the in vitro effects of daidzein on (1) progesterone (P4) and oestradiol (E2) secretion by porcine luteinised granulosa cells harvested from medium follicles, and (2) the mRNA and protein expression of oestrogen receptors α and β (ERα and ERβ) in these cells. The influence of E2 on P4 secretion and ERα and ERβ expression in the granulosa cells of pigs was also investigated. It was found that daidzein inhibited progesterone secretion by luteinised granulosa cells isolated from medium follicles. In contrast, E2 did not affect progesterone production by these cells. Moreover, daidzein did not alter the granulosal secretion of E2. Both daidzein and E2 decreased mRNA expression of ERα in the cells examined. The expression of ERβ mRNA was not affected by daidzein but was inhibited by E2. ERα protein was not detected while ERβ protein was found in the nuclei of the cells. Daidzein and E2 upregulated the expression of ERβ protein in the cells. In summary, the phytoestrogen daidzein directly affected the porcine ovary by inhibiting progesterone production and increasing ERβ protein expression. Daidzein-induced changes in follicular steroidogenesis and granulosal sensitivity to oestrogens may disturb reproductive processes in pigs.


2020 ◽  
Vol 100 (4) ◽  
pp. 657-664
Author(s):  
Jiuxiu Ji ◽  
Taihua Jin ◽  
Rui Zhang ◽  
Angang Lou ◽  
Yingying Chen ◽  
...  

Yanbian yellow cattle breeding is limited by its slow growth. We previously found that the miRNA miR-6523a is differentially expressed between Yanbian yellow cattle and Han Yan cattle, which differ in growth characteristics. In this study, we evaluated the effects of miR-6523a on growth hormone (GH) secretion in pituitary cells of Yanbian yellow cattle. Bioinformatics analyses using TargetScan and RNAhybrid, as well as dual luciferase reporter assays, showed that miR-6523a targets the 3′ untranslated region of somatostatin receptor 5 (SSTR5). We further found that the mRNA and protein expression levels of GH in pituitary cells were significantly higher in cells treated with miR-6523a mimic than in the control group (P = 0.0082 and P = 0.0069). The GH mRNA and protein expression levels were lower in cells treated with miR-6523a inhibitor than in the control group, but the difference was not significant (P = 0.064 and P = 0.089). SSTR5 mRNA and protein levels were inhibited by miR-6523a mimic compared with the control group (P = 0.0024 and P = 0.0028) and were elevated slightly by miR-6523a inhibitor (P = 0.093 and P = 0.091). These results prove that miR-6523a regulates GH secretion in pituitary cells by SSTR5. More broadly, these findings provide a basis for studies of the roles of miRNAs in animal growth and development.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4203 ◽  
Author(s):  
Lei ◽  
Gao ◽  
Feng ◽  
Huang ◽  
Bian ◽  
...  

Endogenous formaldehyde is generated as a normal metabolite via bio-catalysis of γ-glutamyl transpeptidase (GGT) and L-cysteine sulfoxide lyase (C-S lyase) during the growth and development of Lentinula edodes. In this study, we investigated the mRNA and protein expression levels, the activities of GGT and C-S lyase, and the endogenous formaldehyde content in L. edodes at different growth stages. With the growth of L. edodes, a decrease was found in the mRNA and protein expression levels of GGT, while an increase was observed in the mRNA and protein expression levels of C-S lyase as well as the activities of GGT and C-S lyase. Our results revealed for the first time a positive relationship of formaldehyde content with the expression levels of Csl (encoding Lecsl) and Lecsl (C-S lyase protein of Lentinula edodes) as well as the enzyme activities of C-S lyase and GGT during the growth of L. edodes. This research provided a molecular basis for understanding and controlling the endogenous formaldehyde formation in Lentinula edodes in the process of growth.


2020 ◽  
Vol 103 (3) ◽  
pp. 608-619
Author(s):  
Ping Zhong ◽  
Jin Liu ◽  
Hong Li ◽  
Senbin Lin ◽  
Lingfeng Zeng ◽  
...  

Abstract This study aimed to investigate whether cadmium (Cd) cytotoxicity in rat ovarian granulosa cells (OGCs) is mediated through apoptosis or autophagy and to determine the role of microRNAs (miRNAs) in Cd cytotoxicity. To test this hypothesis, rat OGCs were exposed to 0, 10, and 20 μM CdCl2 in vitro. As the Cd concentration increased, OGC apoptosis increased. In addition, Cd promoted apoptosis by decreasing the mRNA and protein expression levels of inhibition of B-cell lymphoma 2 (Bcl2). However, under our experimental conditions, no autophagic changes in rat OGCs were observed, and the mRNA and protein expression levels of the autophagic markers microtubule-associated protein 1 light chain 3 alpha (Map1lc3b) and Beclin1 (Becn1) were not changed. Microarray chip analysis, miRNA screening, and bioinformatics approaches were used to further explore the roles of apoptosis regulation-related miRNAs. In total, 19 miRNAs putatively related to Cd-induced apoptosis in rat OGCs were identified. Notably, miR-204-5p, which may target Bcl2, was identified. Then, rat OGCs were cultured in vitro and used to construct the miR-204-5p-knockdown cell line LV2-short hairpin RNA (shRNA). LV2-shRNA cells were exposed to 20 μM Cd for 12 h, and the mRNA and protein expression levels of Bcl2 were increased. Our findings suggest that Cd is cytotoxic to rat OGCs, and mitochondrial apoptosis rather than autophagy mediates Cd-induced damage to OGCs. Cd also affects apoptosis-related miRNAs, and the underlying apoptotic mechanism may involve the Bcl2 gene.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Meixiu Zhang ◽  
Cuizhe Wang ◽  
Jinxiu Wu ◽  
Xiaodan Ha ◽  
Yuchun Deng ◽  
...  

Objective. To investigate the role and possible molecular mechanism of Krüppel-like factor 7 (KLF7) in the TLR4/NF-κB/IL-6 inflammatory signaling pathway activated by free fatty acids (FFA). Methods. The mRNA and protein expression levels of KLF7 and the factors of TLR4/NF-κB/IL-6 inflammatory signal pathways were detected by qRT-PCR and Western blotting after cell culture with different concentrations of palmitic acid (PA). The expression of KLF7 or TLR4 in adipocytes was upregulated or downregulated; after that, the mRNA and protein expression levels of these key factors were detected. KLF7 expression was downregulated while PA stimulated adipocytes, and then the mRNA and protein expressions of KLF7/p65 and downstream inflammatory cytokine IL-6 were detected. The luciferase reporter assay was used to determine whether KLF7 had a transcriptional activation effect on IL-6. Results. (1) High concentration of PA can promote the expression of TLR4, KLF7, and IL-6 in adipocytes. (2) TLR4 positively regulates KLF7 expression in adipocytes. (3) KLF7 positively regulates IL-6 expression in adipocytes. (4) PA promotes IL-6 expression via KLF7 in adipocytes. (5) KLF7 has a transcriptional activation on IL-6. Conclusion. PA promotes the expression of the inflammatory cytokine IL-6 by activating the TLR4/KLF7/NF-κB inflammatory signaling pathway. In addition, KLF7 may directly bind to the IL-6 promoter region and thus activate IL-6.


2018 ◽  
Vol 96 (3) ◽  
pp. 281-286
Author(s):  
Lu Bai ◽  
Jingjing Li ◽  
Xiaorui Liu ◽  
Shasha Li ◽  
Fulei Li ◽  
...  

We intended to explore whether NH4Cl influences the viability and regulates the expression of Wnt/β-catenin pathway in hepatocytes. The Chang liver cell line was used and cultured with different concentrations of NH4Cl (2.5, 5, 10, 20, 40, and 50 mmol/L) for 12, 24, and 48 h. The viability of hepatocytes was detected by MTT assay. The mRNA and protein expression level was analyzed with qRT–PCR and Western blotting, respectively. NH4Cl concentration significantly affects the viability of hepatocytes. With the increase of NH4Cl concentration, the viability of hepatocytes was decreased, accordingly. The mRNA and protein expression of Wnt1, β-catenin, and cyclin D was significantly increased after treatment with low concentrations of NH4Cl as compared with the control group, whereas their expression levels were decreased after treatment with high concentrations of NH4Cl. The mRNA and protein expression of Wnt1, β-catenin, and cyclin D was also significantly increased after treatment with NH4Cl for a short period as compared with the control group, whereas their expression levels were decreased after treatment with NH4Cl for a long period. In addition, we found NH4Cl treatment significantly reversed the results after RNA silencing of Wnt1 in hepatocytes. NH4Cl influences the viability of hepatocytes and affects the expression of Wnt/β-catenin pathway in hepatocytes.


2005 ◽  
Vol 33 (06) ◽  
pp. 923-934 ◽  
Author(s):  
Zhen Li ◽  
Xian-Ming Lin ◽  
Pei-Li Gong ◽  
Fan-Dian Zeng ◽  
Guan-Hua Du

Gap junction communication between astrocytes plays an important role in the brain. The purpose of this study was to investigate the effects of Gingko biloba extract (GBE) on the changes of connexin 43 (Cx43) mRNA and protein expression levels of rat cortex and hippocampus induced by ischemia-reperfusion and astrocyte gap junction intercellular communication (GJIC) induced by hypoxia-reoxygenation. After 2 hours of middle cerebral artery occlusion (MCAO) followed by 24 hours of reperfusion, there was obvious neurological deficit in rats. Cx43 mRNA and protein expression levels of rat cortex and hippocampus in the ischemia hemisphere were decreased significantly. When GBE at doses of 50 and 100 mg/kg body weight was administrated by p.o. daily for 7 days, the neurological deficit was improved, and lower Cx43 mRNA and protein expression levels induced by ischemia-reperfusion were recovered to normal. The i.p. injection of nimodipine (0.7 mg/kg weight body) also showed improvement on neurological deficit and Cx43 expression levels. Astrocyte GJIC was measured by the fluorescence recovery after photobleaching (FRAP). Hypoxia-reoxygenation induced a significant decrease in GJIC. Pretreatment with GBE (100 mg/l) and nimodipine (1.6 mg/l) significantly prevented the hypoxia-reoxygenation inhibition of GJIC. These results suggest that GBE could exert its neuroprotective effects by improvement of Cx43 expression and GJIC induced by hypoxia/ischemia-reoxygenation/ reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document