An improved thermo-mechanical model for spindle transient preload analysis

Author(s):  
Jiandong Li ◽  
Yongsheng Zhu ◽  
Ke Yan ◽  
Jun Hong ◽  
Xiaoyun Yan

Preload has a significant effect on the precision of machine tool spindle, and it changes transiently in different operating conditions. In this paper, the transient feature of spindle preload under multi-factor coupled effect was discussed theoretically and experimentally. By adopting the transient network method and the time-discrete approach, the integrated thermo-mechanical model of a spindle was established. The axial and radial deformations of spindle system, induced by centrifugal force, thermal, and assembly stresses, were all discussed. The effects of the various factors on the transient preload were analyzed, and results show that speed and temperature contribute the most to the transient preload, followed by the bearing deflection. Finally, experimental results indicate the correctness of the improved model.

Author(s):  
Yiqi Cheng ◽  
Xinhua Wang ◽  
Waheed Ur Rehman ◽  
Tao Sun ◽  
Hasan Shahzad ◽  
...  

This study presents a novel cylindrical vane pump based on the traditional working principle. The efficiency of the cylindrical vane pump was verified by experimental validation and numerical analysis. Numerical analysis, such as kinematics analysis, was performed in Pro/Mechanism and unsteady flow-field analysis was performed using ANSYS FLUENT. The stator surface equations were derived using the geometric theory of the applied spatial triangulation function. A three-dimensional model of the cylindrical vane pump was established with the help of MATLAB and Pro/E. The kinematic analysis helped in developing kinematic equations for cylindrical vane pumps and proved the effectiveness of the structural design. The maximum inaccuracy error of the computational fluid dynamics (CFD) model was 5.7% compared with the experimental results, and the CFD results show that the structure of the pump was reasonable. An experimental test bench was developed, and the results were in excellent agreement with the numerical results of CFD. The experimental results show that the cylindrical vane pump satisfied the three-element design of a positive-displacement pump and the trend of changes in efficiency was the same for all types of efficiency under different operating conditions. Furthermore, the volumetric efficiency presented a nonlinear positive correlation with increased rotational velocity, the mechanical efficiency showed a nonlinear negative correlation, and the total efficiency first increased and then decreased. When the rotational velocity was 1.33[Formula: see text] and the discharge pressure was 0.68[Formula: see text], the total efficiency reached its maximum value.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chinedu I. Ossai

The flow of crude oil, water, and gas from the reservoirs through the wellheads results in its deterioration. This deterioration which is due to the impact of turbulence, corrosion, and erosion significantly reduces the integrity of the wellheads. Effectively managing the wellheads, therefore, requires the knowledge of the extent to which these factors contribute to its degradation. In this paper, the contribution of some operating parameters (temperature, CO2 partial pressure, flow rate, and pH) on the corrosion rate of oil and gas wellheads was studied. Field data from onshore oil and gas fields were analysed with multiple linear regression model to determine the dependency of the corrosion rate on the operating parameters. ANOVA, value test, and multiple regression coefficients were used in the statistical analysis of the results, while in previous experimental results, de Waard-Milliams models and de Waard-Lotz model were used to validate the modelled wellhead corrosion rates. The study shows that the operating parameters contribute to about 26% of the wellhead corrosion rate. The predicted corrosion models also showed a good agreement with the field data and the de Waard-Lotz models but mixed results with the experimental results and the de Waard-Milliams models.


Author(s):  
Avihay Ohana ◽  
Oren Aharon ◽  
Ronen Maimon ◽  
Boris Nepomnyashchy ◽  
Lior Kogut

A study of the dynamic behavior of an RF MEMS switch is presented at different operating conditions. Experimental results for the actuation and release time and Q-factor as a function of the ambient pressure and actuation voltage are compared to theoretical predictions based on existing model. Optimal operating conditions (ambient pressure and actuation voltage) are determined based on two criterions: minimal actuation and release time and minimal oscillations upon switch release. In light of the experimental results optimal operating conditions determined to be 1.4Vpi at a pressure of a few torrs where actuation and release time are equal and short enough with no release oscillations. Three pressure regimes are identified with characteristic behavior of the Q-factor and actuation and release time in each regime. These behaviors have significant implications in many MEMS devices, especially RF MEMS switches.


2001 ◽  
Vol 123 (4) ◽  
pp. 630-636 ◽  
Author(s):  
Walter Verdonck ◽  
Jan Swevers ◽  
Jean-Claude Samin

This paper discusses the advantages of using periodic excitation and of combining internal and external measurements in experimental robot identification. This discussion is based on the robot identification method developed by Swevers et al., a method that is recognized by industry as an effective means of robot identification that is frequently used, Hirzinger, G., Fischer, M., Brunner, B., Koeppe, R., Otter, M., Grebenstein, M., and Schafer, I, 1999, “Advances is Robotics: The DLR Experiment,” The International Journal of Robotics Research, Vol. 18, No. 11, pp. 1064–1087 [3]. Experimental results on a KUKA IR 361 show that the periodicity of the robot excitation is a key element of this method. Nonperiodic robot excitation complicates the signal processing preceding the parameter estimation, often yielding less accurate parameter estimates. An extension of this identification method combines internal and external measurements, Chenut, X., Samin, J. C., Swevers, J., and Ganseman, C., 2000, “Combining Internal and External robot Models for improved Model Parameter Estimation,” Mechanical Systems and Signal Processing. Vol. 14, No. 5, pp. 691–704 [4], yielding robot models that allow to accurately predict the actuator torques and the reaction forces/torques of the robot on its base plate, which are both important for the path planning. This paper presents and critically discusses the first experimental results obtained with this method.


Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) force automotive manufacturers to equip DPF (diesel particulate filter) on diesel cars. Generally, post injection is used as a method to regenerate DPF. However, it is known that post injection deteriorates specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration becomes one of key technologies for diesel powertrain equipped with a DPF. This paper presents correlations between fuel injection strategy and exhaust gas temperature for DPF regeneration. Experimental apparatus consists of a single cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, post injection timing covers from 40 deg aTDC to 110 deg aTDC and double post injection was considered. In addition, effects of injection pressures were investigated. The engine load was varied from low-load to mid-load and fuel amount of post injection was increased up to 10mg/stk. Oil dilution during fuel injection and combustion processes were estimated by diesel loss measured by comparing two global equivalences ratios; one is measured from Lambda sensor installed at exhaust port, the other one is estimated from intake air mass and injected fuel mass. In the present study, the differences in global equivalence ratios were mainly caused from oil dilution during post injection. The experimental results of the present study suggest an optimal engine operating conditions including fuel injection strategy to get appropriate exhaust gas temperature for DPF regeneration. Experimental results of exhaust gas temperature distributions for various engine operating conditions were summarized. In addition, it was revealed that amounts of oil dilution were reduced by splitting post injection (i.e., double post injection). Effects of injection pressure on exhaust gas temperature were dependent on combustion phasing and injection strategies.


Author(s):  
Adamos Adamou ◽  
Colin Copeland

Abstract Augmented backside cooling refers to the enhancement of the backside convection of a combustor liner using extended heat transfer surfaces to fully utilise the cooling air by maximising the heat transfer to pumping ratio characteristic. Although film cooling has and still is widely used in the gas turbine industry, augmented backside cooling has been in development for decades now. The reason for this, is to reduce the amount of air used for liner cooling and to also reduce the emissions caused by using film cooling in the primary zones. In the case of micro gas turbines, emissions are of even greater importance, since the regulations for such engines will most likely become stricter in the following years due to a global effort to reduce emission. Furthermore, the liners investigated in this paper are for a 10 kWe micro turbine, destine for various potential markets, such as combine heat and power for houses, EV hybrids and even small UAVs. The majority of these markets require long service intervals, which in turn requires the combustor liners to be under the least amount of thermal stress possible. The desire to also increase combustor inlet temperatures with the use of recuperated exhaust gases, which in turn increase the overall system efficiency, limits the cooling effectiveness of the inlet air. Due to all these reasons, an advanced form of augmented backside cooling would be of substantial significance in such a system. Currently some very simple designs are used in the form of straight plain fins, transverse strips or other similar geometries, but the creation of high heat transfer efficiency surfaces in such small sizes becomes very difficult with traditional subtractive manufacturing methods. When using additive manufacturing though these types of surfaces are not an issue. This paper covers the comparison of experimental results with conjugate heat transfer CFD models and empirical heat balance models for two different AM liner cooling geometries and an AM blank liner. The two cooling fin geometries include a rotating plain fin and an offset strip fin. The liners were tested in an AM built reverse flow radial swirl stabilised combustion chamber at a variety of operating conditions. During the experiments the surfaces were compared using a thermal camera to record the outer liner temperature which was viewed through a quartz outer casing. The experimental results showed that the cooling surfaces were effective at reducing the liner temperatures with minimal pressure losses for multiple operating points. Those results were then compared against the conjugate heat transfer CFD models and the empirical calculations used to design the surfaces initially. From this comparison, it was noticed both the CFD and empirical calculations under predicted the wall temperatures. This is thought to be due to inaccuracies in the predicted flame temperatures and the assumed emissivity values used to calibrate the thermal imaging camera. Further uncertainties arise from the assumption of a constant air and hot gas temperature and mass flow along the cooling surfaces and the lack of data for the surface roughness of the parts.


Author(s):  
Sebastian Wittwer ◽  
Ivo Sandor

Abstract Recent developments in turbocharged gasoline engines have established new requirements for the turbine. A simple approach of scaling or optimizing existing turbines on component level might not be sufficient in terms of finding an optimal solution according to the multi-point, multi-disciplinary layout target. In the following paper nondimensional functional parameters are derived from turbomachinery analytics and rated on corresponding values of existing turbine stages. The influence of different parameters on aerodynamic performance is discussed based on CFD results and arranged according to their sensitivity for different engine relevant operating conditions. A metamodel for the preliminary design of variable nozzle turbine stages is derived from DoE (Design of Experiments) based CFD results. It is evaluated regarding its predictive quality on several exemplary turbine stages. Both, CFD and experimental results are therefore used while the experimental results are made up of hot gas stand measurements as well as measurements on engine test bench. Thus, not only the influence of functional parameters can be verified on turbine efficiency characteristics, but beyond that also the predictive quality of engine performance can be assessed.


2020 ◽  
Vol 10 (12) ◽  
pp. 4358
Author(s):  
Xinghua Li ◽  
Jue Li ◽  
Xuan Wei ◽  
Xiaohuan Yang ◽  
Zhikun Su ◽  
...  

Freeform surface is one of the research focuses in the measurement field. A composite module is composed of a plane and rotating paraboloid. The composite module array can identify 21 geometric errors of the machine tool in a wide range, which is composed of several composite modules. Eliminating the error of the array itself is of great significance for improving measurement accuracy. For this reason, this paper proposed a noncontact method for calibrating the angle and position of the composite module array. This paper used a self-developed angle sensor to access corresponding information and established the mathematical model according to the freeform surface’s geometric characteristics to achieve calibration. In addition, the influence of array placement error on calibration was analyzed. The experimental results showed that the angle repeatability was within 0.4″ around the X-axis and within 0.3″ around the Y-axis, and the position repeatability was within 0.4 µm in the X direction and within 0.7 µm in the Y direction. The measurement comparison experiments with high-precision laser interferometer and uncalibrated array verified the correctness of the experimental results. This method provides an important reference for practical application and freeform surface array calibration, and creates conditions for the implementation of machine tool error detection.


2005 ◽  
Vol 128 (2) ◽  
pp. 359-369 ◽  
Author(s):  
Rafael Ballesteros-Tajadura ◽  
Sandra Velarde-Suárez ◽  
Juan Pablo Hurtado-Cruz ◽  
Carlos Santolaria-Morros

In this work, a numerical model has been applied in order to obtain the wall pressure fluctuations at the volute of an industrial centrifugal fan. The numerical results have been compared to experimental results obtained in the same machine. A three-dimensional numerical simulation of the complete unsteady flow on the whole impeller-volute configuration has been carried out using the computational fluid dynamics code FLUENT®. This code has been employed to calculate the time-dependent pressure both in the impeller and in the volute. In this way, the pressure fluctuations in some locations over the volute wall have been obtained. The power spectra of these fluctuations have been obtained, showing an important peak at the blade passing frequency. The amplitude of this peak presents the highest values near the volute tongue, but the spatial pattern over the volute extension is different depending on the operating conditions. A good agreement has been found between the numerical and the experimental results.


Sign in / Sign up

Export Citation Format

Share Document