scholarly journals Sound predictions in an urban context

2021 ◽  
pp. 1351010X2110346
Author(s):  
J Niesten ◽  
MJ Tenpierik ◽  
J Krimm

Recent studies show that environmental noise in urban environments continues to be a great health risk. This noise is especially further transmitted by the hard materials that are mostly used for façades. To predict these effects it is desirable to have a reliable prediction method. There are already several ways to predict sound levels in an urban context. This paper investigates two while focusing specifically on a practical approach to show that the methods are suitable to use during an actual design project. The impact of changing a façade at a specific location is investigated using both prediction methods. A façade which reflects sound to a location where it has a smaller impact, a sound absorbing façade, and a façade which combines both are taken into consideration. These façade adaptions have the potential to improve the sound levels in the investigated area from 1.7 up to 9.3 dB(A).

2020 ◽  
pp. 0309524X2094120 ◽  
Author(s):  
Zhongda Tian

With the continuous growth of wind power access capacity, the impact of intermittent and volatile wind power generation on the grid is becoming more and more obvious, so the research of wind power prediction method has been widely concerned. Accurate wind power prediction can provide necessary support for the power grid dispatching, combined operation of generating units, operation, and maintenance of wind farms. According to the existing wind power prediction methods, the wind power prediction methods are systematically classified according to the time scale, model object, and model principle of prediction. The physical methods, statistical methods include single and ensemble prediction methods related to wind power prediction are introduced in detail. The error evaluation indicator of the prediction method is analyzed, and the advantages and disadvantages of each prediction method and its applicable occasions are given. At the same time, in view of the existing problems in the wind power prediction method, the corresponding improvement plan is put forward. Finally, this article points out that the research is needed for wind power prediction in the future.


2012 ◽  
Vol 34 (2) ◽  
Author(s):  
Paul D. Thorn ◽  
Gerhard Schurz

AbstractMeta-induction, in its various forms, is an imitative prediction method, where the prediction methods and the predictions of other agents are imitated to the extent that those methods or agents have proven successful in the past. In past work, Schurz demonstrated the optimality of meta-induction as a method for predicting unknown events and quantities. However, much recent discussion, along with formal and empirical work, on the Wisdom of Crowds has extolled the virtue of diverse and independent judgment as essential to maintenance of 'wise crowds'. This suggests that meta-inductive prediction methods could undermine the wisdom of the crowd inasmuch these methods recommend that agents imitate the predictions of other agents. In this article, we evaluate meta-inductive methods with a focus on the impact on a group's performance that may result from including meta-inductivists among its members. In addition to considering cases of global accessibility (i.e., cases where the judgments of all members of the group are available to all of the group's members), we consider cases where agents only have access to the judgments of other agents within their own local neighborhoods.


2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


2021 ◽  
Vol 13 (11) ◽  
pp. 6106
Author(s):  
Irantzu Alvarez ◽  
Laura Quesada-Ganuza ◽  
Estibaliz Briz ◽  
Leire Garmendia

This study assesses the impact of a heat wave on the thermal comfort of an unconstructed area: the North Zone of the Island of Zorrotzaurre (Bilbao, Spain). In this study, the impact of urban planning as proposed in the master plan on thermal comfort is modeled using the ENVI-met program. Likewise, the question of whether the urbanistic proposals are designed to create more resilient urban environments is analyzed in the face of increasingly frequent extreme weather events, especially heat waves. The study is centered on the analysis of temperature variables (air temperature and average radiant temperature) as well as wind speed and relative humidity. This was completed with the parameters of thermal comfort, the physiological equivalent temperature (PET) and the Universal Temperature Climate Index (UTCI) for the hours of the maximum and minimum daily temperatures. The results demonstrated the viability of analyzing thermal comfort through simulations with the ENVI-met program in order to analyze the behavior of urban spaces in various climate scenarios.


2021 ◽  
Vol 13 (9) ◽  
pp. 5063
Author(s):  
Katinka H. Evensen ◽  
Helena Nordh ◽  
Ramzi Hassan ◽  
Aslak Fyhri

Access to safe, green urban environments is important for quality of life in cities. The objective of this study is to explore the impact of a safety-enhancing landscape design measure on visitors’ experiences in an urban park. Additionally, this paper combines the use of field and virtual reality (VR) experiments, contributing methodological insights into how to evaluate safety measures in green space management and research on perceived safety. In a field experiment (n = 266), we explored whether the height of a hedge along a pathway influenced perceived safety among users. The field study showed that cutting down the hedge improved the perceived prospect of the immediate surrounding areas for female users, which again made them feel safer in the park. We developed a VR experiment for an evening scenario in the same environment (n = 19) to supplement the field study and test the effect of the intervention further. The VR experiment also found a gender effect on perceived safety, with females reporting lower perceived safety, but no effect was shown for the height of the hedge. The results in this study show that environmental attributes such as perceived prospect and concealment should be considered in the design and management of urban green spaces. Additionally, this research demonstrates an approach to conducting field experiments to test the effects of actual design interventions and then further developing these experiments using VR technology. Further research on perceived safety in outdoor spaces is needed to make use of this combined method’s potential.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
Hugo Savill Russell ◽  
Louise Bøge Frederickson ◽  
Ole Hertel ◽  
Thomas Ellermann ◽  
Steen Solvang Jensen

NOx is a pervasive pollutant in urban environments. This review assesses the current state of the art of photocatalytic oxidation materials, designed for the abatement of nitrogen oxides (NOx) in the urban environment, and typically, but not exclusively based on titanium dioxide (TiO2). Field trials with existing commercial materials, such as paints, asphalt and concrete, in a range of environments including street canyons, car parks, tunnels, highways and open streets, are considered in-depth. Lab studies containing the most recent developments in the photocatalytic materials are also summarised, as well as studies investigating the impact of physical parameters on their efficiency. It is concluded that this technology may be useful as a part of the measures used to lower urban air pollution levels, yielding ∼2% NOx removal in the immediate area around the surface, for optimised TiO2, in some cases, but is not capable of the reported high NOx removal efficiencies >20% in outdoor urban environments, and can in some cases lower air quality by releasing hazardous by-products. However, research into new material is ongoing. The reason for the mixed results in the studies reviewed, and massive range of removal efficiencies reported (from negligible and up to >80%) is mainly the large range of testing practices used. Before deployment in individual environments site-specific testing should be performed, and new standards for lab and field testing should be developed. The longevity of the materials and their potential for producing hazardous by-products should also be considered.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Piotr F. Czempik ◽  
Agnieszka Jarosińska ◽  
Krystyna Machlowska ◽  
Michał P. Pluta

Abstract Sleep disruption is common in patients in the intensive care unit (ICU). The aim of the study was to measure sound levels during sleep-protected time in the ICU, determine sources of sound, assess the impact of sound levels and patient-related factors on duration and quality of patients' sleep. The study was performed between 2018 and 2019. A commercially available smartphone application was used to measure ambient sound levels. Sleep duration was measured using the Patient's Sleep Behaviour Observational Tool. Sleep quality was assessed using the Richards-Campbell Sleep Questionnaire (RCSQ). The study population comprised 18 (58%) men and 13 (42%) women. There were numerous sources of sound. The median duration of sleep was 5 (IQR 3.5–5.7) hours. The median score on the RCSQ was 49 (IQR 28–71) out of 100 points. Sound levels were negatively correlated with sleep duration. The cut-off peak sound level, above which sleep duration was shorter than mean sleep duration in the cohort, was 57.9 dB. Simple smartphone applications can be useful to estimate sound levels in the ICU. There are numerous sources of sound in the ICU. Individual units should identify and eliminate their own sources of sound. Sources of sound producing peak sound levels above 57.9 dB may lead to shorter sleep and should be eliminated from the ICU environment. The sound levels had no effect on sleep quality.


Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke

The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary.


2021 ◽  
Vol 7 (4) ◽  
pp. 1-24
Author(s):  
Douglas Do Couto Teixeira ◽  
Aline Carneiro Viana ◽  
Jussara M. Almeida ◽  
Mrio S. Alvim

Predicting mobility-related behavior is an important yet challenging task. On the one hand, factors such as one’s routine or preferences for a few favorite locations may help in predicting their mobility. On the other hand, several contextual factors, such as variations in individual preferences, weather, traffic, or even a person’s social contacts, can affect mobility patterns and make its modeling significantly more challenging. A fundamental approach to study mobility-related behavior is to assess how predictable such behavior is, deriving theoretical limits on the accuracy that a prediction model can achieve given a specific dataset. This approach focuses on the inherent nature and fundamental patterns of human behavior captured in that dataset, filtering out factors that depend on the specificities of the prediction method adopted. However, the current state-of-the-art method to estimate predictability in human mobility suffers from two major limitations: low interpretability and hardness to incorporate external factors that are known to help mobility prediction (i.e., contextual information). In this article, we revisit this state-of-the-art method, aiming at tackling these limitations. Specifically, we conduct a thorough analysis of how this widely used method works by looking into two different metrics that are easier to understand and, at the same time, capture reasonably well the effects of the original technique. We evaluate these metrics in the context of two different mobility prediction tasks, notably, next cell and next distinct cell prediction, which have different degrees of difficulty. Additionally, we propose alternative strategies to incorporate different types of contextual information into the existing technique. Our evaluation of these strategies offer quantitative measures of the impact of adding context to the predictability estimate, revealing the challenges associated with doing so in practical scenarios.


2021 ◽  
Vol 263 (6) ◽  
pp. 206-214
Author(s):  
David Montes-González ◽  
Juan Miguel Barrigón-Morillas ◽  
Ana Cristina Bejarano-Quintas ◽  
Manuel Parejo-Pizarro ◽  
Guillermo Rey-Gozalo ◽  
...  

The pandemic of coronavirus disease (COVID-19) led to the need for drastic control measures around the world to reduce the impact on the health of the population. The confinement of people in their homes resulted in a significant reduction in human activity at every level (economic, social, industrial, etc.), which was reflected in a decrease in environmental pollution levels. Studying the evolution of parameters, such as the level of environmental noise caused by vehicle traffic in urban environments, makes it possible to assess the impact of this type of measure. This paper presents a case study of the acoustic situation in Cáceres (Spain) during the restriction period by means of long-term acoustic measurements at various points of the city.


Sign in / Sign up

Export Citation Format

Share Document