Interferon-beta affects mitochondrial activity in CD4+lymphocytes: Implications for mechanism of action in multiple sclerosis

2014 ◽  
Vol 21 (10) ◽  
pp. 1262-1270 ◽  
Author(s):  
Aiden Haghikia ◽  
Simon Faissner ◽  
Derek Pappas ◽  
Bartosz Pula ◽  
Denis A Akkad ◽  
...  

Background:Whereas cellular immune function depends on energy supply and mitochondrial function, little is known on the impact of immunotherapies on cellular energy metabolism.Objective:The objective of this paper is to assess the effects of interferon-beta (IFN-β) on mitochondrial function of CD4+T cells.Methods:Intracellular adenosine triphosphate (iATP) in phytohemagglutinin (PHA)-stimulated CD4+cells of multiple sclerosis (MS) patients treated with IFN-β and controls were analyzed in a luciferase-based assay. Mitochondrial-transmembrane potential (ΔΨm) in IFN-β-treated peripheral blood mononuclear cells (PBMCs) was investigated by flow cytometry. Expression of genes involved in mitochondrial oxidative phosphorylation (OXPHOS) in CD4+cells of IFN-β-treated individuals and correlations between genetic variants in the key metabolism regulator PGC-1α and IFN-β response in MS were analyzed.Results:IFN-β-treated MS patients exhibited a dose-dependent reduction of iATP levels in CD4+T cells compared to controls ( p < 0.001). Mitochondrial effects were reflected by depolarization of ΔΨm. Expression data revealed changes in the transcription of OXPHOS-genes. iATP levels in IFN-β-responders were reduced compared to non-responders ( p < 0.05), and the major T allele of the SNP rs7665116 of PGC-1α correlated with iATP-levels.Conclusion:Reduced iATP-synthesis ex vivo and differential expression of OXPHOS-genes in CD4+T cells point to unknown IFN-β effects on mitochondrial energy metabolism, adding to potential pleiotropic mechanisms of action.

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Leslie P. Cousens ◽  
Yan Su ◽  
Elizabeth McClaine ◽  
Xin Li ◽  
Frances Terry ◽  
...  

HLA class II-restricted regulatory T cell (Treg) epitopes in IgG (also called “Tregitopes”) have been reported to suppress immune responses to coadministered antigens by stimulating the expansion of natural Tregs (nTregs). Here we evaluate their impact on human immune responses to islet cell antigensex vivoand on the modulation of type 1 diabetes (T1D) in a murine modelin vivo. Co-administration of Tregitopes and T1D antigens delayed development of hyperglycemia and reduced the incidence of diabetes in NOD mice. Suppression of diabetes could be observed even following onset of disease. To measure the impact of Tregitope treatment on T cell responses, we evaluated the effect of Tregitope treatment in DO11.10 mice. Upregulation of FoxP3 in KJ1-26-stained OVA-specific CD4+T cells was observed following treatment of DO11.10 mice with Tregitopes, along with reductions in anti-OVA Ig and T effector responses. Inex vivostudies of human T cells, peripheral blood mononuclear cells’ (PBMC) responses to GAD65 epitopes in the presence and absence of Tregitope were variable. Suppression of immune responses to GAD65 epitopesex vivoby Tregitope appeared to be more effective in assays using PBMC from a newly diagnosed diabetic subject than for other more established diabetic subjects, and correlation of the degree of suppression with predicted HLA restriction of the Tregitopes was confirmed. Implementation of these defined regulatory T cell epitopes for therapy of T1D and other autoimmune diseases may lead to a paradigm shift in disease management.


2020 ◽  
Vol 10 (1) ◽  
pp. 52 ◽  
Author(s):  
Maria Sofia Basile ◽  
Emanuela Mazzon ◽  
Katia Mangano ◽  
Manuela Pennisi ◽  
Maria Cristina Petralia ◽  
...  

Tetraspanins are a conserved family of proteins involved in a number of biological processes. We have previously shown that Tetraspanin-32 (TSPAN32) is significantly downregulated upon activation of T helper cells via anti-CD3/CD28 stimulation. On the other hand, TSPAN32 is marginally modulated in activated Treg cells. A role for TSPAN32 in controlling the development of autoimmune responses is consistent with our observation that encephalitogenic T cells from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice exhibit significantly lower levels of TSPAN32 as compared to naïve T cells. In the present study, by making use of ex vivo and in silico analysis, we aimed to better characterize the pathophysiological and diagnostic/prognostic role of TSPAN32 in T cell immunity and in multiple sclerosis (MS). We first show that TSPAN32 is significantly downregulated in memory T cells as compared to naïve T cells, and that it is further diminished upon ex vivo restimulation. Accordingly, following antigenic stimulation, myelin-specific memory T cells from MS patients showed significantly lower expression of TSPAN32 as compared to memory T cells from healthy donors (HD). The expression levels of TSPAN32 was significantly downregulated in peripheral blood mononuclear cells (PBMCs) from drug-naïve MS patients as compared to HD, irrespective of the disease state. Finally, when comparing patients undergoing early relapses in comparison to patients with longer stable disease, moderate but significantly lower levels of TSPAN32 expression were observed in PBMCs from the former group. Our data suggest a role for TSPAN32 in the immune responses underlying the pathophysiology of MS and represent a proof-of-concept for additional studies aiming at dissecting the eventual contribution of TSPAN32 in other autoimmune diseases and its possible use of TSPAN32 as a diagnostic factor and therapeutic target.


Author(s):  
Hazal Gezmis ◽  
Tansu Doran ◽  
Saime Fusun Mayda Domac ◽  
Deniz Yucel ◽  
Rahsan Karaci ◽  
...  

Aim of the Study: Multiple sclerosis (MS) is an autoimmune disorder causing demyelination in axons. Available therapies target different molecules, but not all have therapeutic effects on disease progression, and this effect can only be seen after a long-time administration. Interferon beta (IFN-β), an MS therapy for many years, slows down the disease progression and reduces disease symptoms by targeting T cells. Yet, a considerable portion of the patient has experienced no therapeutic response to IFN-β. It is necessary to determine disease-specific biomarkers which allow early diagnosis or treatment of MS. Here, it was aimed to determine the effects of interleukin 10 (IL10) and 23 (IL23A) as well as forkhead box P3 (FOXP3) genes on MS after IFN-β therapy. Materials & Methods: Peripheral blood mononuclear cells (PBMCs) were extracted to isolate CD4+ and CD25+ T cells. Cytotoxicity assays were performed on each cell type for determining optimum drug concentration. Then, cells were cultured and determined drug concentration was administered to the cells to measure gene expressions with RT-PCR. Results: It was found that the cytotoxic effect of IFN-β was more efficient as the exposure time was expanded regardless of drug concentration. Moreover, CD25+ T lymphocytes were more resistant to IFN-β. IL23A was down-regulated, whereas FOXP3 was up-regulated at 48h in CD4+ T cells. For CD25+ T cells, the graded increase of FOXP3 was obtained while IL10 expression was gradually decreased throughout the drug intake, significantly. Conclusion: Although considerable change in expression was obtained, the long-term IFN-β effect on both genes and cells should be determined by follow-up at least a year. Keywords: MS, IFN-β, IL23A, FOXP3, IL10, T cells


2020 ◽  
Vol 4 (10) ◽  
pp. 2143-2157 ◽  
Author(s):  
Alak Manna ◽  
Timothy Kellett ◽  
Sonikpreet Aulakh ◽  
Laura J. Lewis-Tuffin ◽  
Navnita Dutta ◽  
...  

Abstract Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 101
Author(s):  
Ivet A. Yordanova ◽  
Friederike Ebner ◽  
Axel Ronald Schulz ◽  
Svenja Steinfelder ◽  
Berit Rosche ◽  
...  

Considering their potent immunomodulatory properties, therapeutic applications of Trichuris suis ova (TSO) are studied as potential alternative treatment of autoimmune disorders like multiple sclerosis (MS), rheumatoid arthritis (RA), or inflammatory bowel disease (IBD). Clinical phase 1 and 2 studies have demonstrated TSO treatment to be safe and well tolerated in MS patients, however, they reported only modest clinical efficacy. We therefore addressed the cellular and humoral immune responses directed against parasite antigens in individual MS patients receiving controlled TSO treatment (2500 TSO p.o. every 2 weeks for 12 month). Peripheral blood mononuclear cells (PBMC) of MS patients treated with TSO (n = 5) or placebo (n = 6) were analyzed. A continuous increase of serum IgG and IgE antibodies specific for T. suis excretory/secretory antigens was observed up to 12 months post-treatment. This was consistent with mass cytometry analysis identifying an increase of activated HLA-DRhigh plasmablast frequencies in TSO-treated patients. While stable and comparable frequencies of total CD4+ and CD8+ T cells were detected in placebo and TSO-treated patients over time, we observed an increase of activated HLA-DR+CD4+ T cells in TSO-treated patients only. Frequencies of Gata3+ Th2 cells and Th1/Th2 ratios remained stable during TSO treatment, while Foxp3+ Treg frequencies varied greatly between individuals. Using a T. suis antigen-specific T cell expansion assay, we also detected patient-to-patient variation of antigen-specific T cell recall responses and cytokine production. In summary, MS patients receiving TSO treatment established a T. suis-specific T- and B-cell response, however, with varying degrees of T cell responses and cellular functionality across individuals, which might account for the overall miscellaneous clinical efficacy in the studied patients.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Anna K. Lundberg ◽  
Rosanna W. S. Chung ◽  
Louise Zeijlon ◽  
Gustav Fernström ◽  
Lena Jonasson

Abstract Background Inflammation and oxidative stress form a vicious circle in atherosclerosis. Oxidative stress can have detrimental effects on T cells. A unique subset of CD4+ T cells, known as regulatory T (Treg) cells, has been associated with atheroprotective effects. Reduced numbers of Treg cells is a consistent finding in patients with chronic coronary syndrome (CCS). However, it is unclear to what extent these cells are sensitive to oxidative stress. In this pilot study, we tested the hypothesis that oxidative stress might be a potential contributor to the Treg cell deficit in CCS patients. Methods Thirty patients with CCS and 24 healthy controls were included. Treg (CD4+CD25+CD127−) and conventional T (CD4+CD25−, Tconv) cells were isolated and treated with increasing doses of H2O2. Intracellular ROS levels and cell death were measured after 2 and 18 h, respectively. The expression of antioxidant genes was measured in freshly isolated Treg and Tconv cells. Also, total antioxidant capacity (TAC) was measured in fresh peripheral blood mononuclear cells, and oxidized (ox) LDL/LDL ratios were determined in plasma. Results At all doses of H2O2, Treg cells accumulated more ROS and exhibited higher rates of death than their Tconv counterparts, p < 0.0001. Treg cells also expressed higher levels of antioxidant genes, including thioredoxin and thioredoxin reductase-1 (p < 0.0001), though without any differences between CCS patients and controls. Tconv cells from CCS patients were, on the other hand, more sensitive to oxidative stress ex vivo and expressed more thioredoxin reductase-1 than Tconv cells from controls, p < 0.05. Also, TAC levels were lower in patients, 0.97 vs 1.53 UAE/100 µg, p = 0.001, while oxLDL/LDL ratios were higher, 29 vs 22, p = 0.006. Conclusion Treg cells isolated from either CCS patients or healthy controls were all highly sensitive to oxidative stress ex vivo. There were signs of oxidant-antioxidant imbalance in CCS patients and we thus assume that oxidative stress may play a role in the reduction of Treg cells in vivo.


2021 ◽  
Vol 11 (8) ◽  
pp. 721
Author(s):  
Afshin Derakhshani ◽  
Zahra Asadzadeh ◽  
Hossein Safarpour ◽  
Patrizia Leone ◽  
Mahdi Abdoli Shadbad ◽  
...  

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that is characterized by inflammation which typically results in significant impairment in most patients. Immune checkpoints act as co-stimulatory and co-inhibitory molecules and play a fundamental role in keeping the equilibrium of the immune system. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and Programmed death-ligand 1 (PD-L1), as inhibitory immune checkpoints, participate in terminating the development of numerous autoimmune diseases, including MS. We assessed the CTLA-4 and PD-L1 gene expression in the different cell types of peripheral blood mononuclear cells of MS patients using single-cell RNA-seq data. Additionally, this study outlines how CTLA-4 and PD-L1 expression was altered in the PBMC samples of relapsing-remitting multiple sclerosis (RRMS) patients compared to the healthy group. Finally, it investigates the impact of various MS-related treatments in the CTLA-4 and PD-L1 expression to restrain autoreactive T cells and stop the development of MS autoimmunity.


Cytotherapy ◽  
2007 ◽  
Vol 9 (2) ◽  
pp. 144-157 ◽  
Author(s):  
Ca Keever-Taylor ◽  
Mb Browning ◽  
Bd Johnson ◽  
Rl Truitt ◽  
Cn Bredeson ◽  
...  

2008 ◽  
Vol 76 (10) ◽  
pp. 4538-4545 ◽  
Author(s):  
William W. Kwok ◽  
Junbao Yang ◽  
Eddie James ◽  
John Bui ◽  
Laurie Huston ◽  
...  

ABSTRACT Cellular immune responses against protective antigen (PA) of Bacillus anthracis in subjects that received the anthrax vaccine adsorbed (AVA) vaccine were examined. Multiple CD4+ T-cell epitopes within PA were identified by using tetramer-guided epitope mapping. PA-reactive CD4+ T cells with a CD45RA− phenotype were also detected by direct ex vivo staining of peripheral blood mononuclear cells (PBMC) with PA-specific tetramers. Surprisingly, PA-specific T cells were also detected in PBMC of nonvaccinees after a single cycle of in vitro PA stimulation. However, PA-reactive CD4+ T cells in nonvaccinees occurred at lower frequencies than those in vaccinees. The majority of PA-reactive T cells from nonvaccinees were CD45RA+ and exhibited a Th0/Th1 cytokine profile. In contrast, phenotyping and cytokine profile analyses of PA-reactive CD4+ T cells from vaccinees indicated that vaccination leads to commitment of PA-reactive T cells to a Th2 lineage, including generation of PA-specific, pre-Th2 central memory T cells. These results demonstrate that the current AVA vaccine is effective in skewing the development of PA CD4+ T cells to the Th2 lineage. The data also demonstrated the feasibility of using class II tetramers to analyze CD4+ cell responses and lineage development after vaccination.


2021 ◽  
Vol 67 (2) ◽  
pp. 95-101
Author(s):  
Monica Vuță ◽  
Ionela-Maria Cotoi ◽  
Ion Bogdan Mănescu ◽  
Doina Ramona Manu ◽  
Minodora Dobreanu

Abstract Objective: In vitro cytokine production by peripheral blood mononuclear cells (PBMCs) is an important and reliable measure of immunocompetence. PBMC can be stimulated directly after isolation or frozen for later use. However, cryopreservation may affect cell recovery, viability and functionality. This study aims to investigate cytokine synthesis in ex-vivo stimulated fresh and cryopreserved CD4+ and CD4- T cells. Methods: PBMCs were obtained by Ficoll gradient centrifugation from heparinized peripheral blood of 6 middle-aged clinically healthy subjects. Half of these cells (labeled “Fresh”) was further processed and the other half (labeled “Cryo”) was cryopreserved at -140°C for up to 3 months. Fresh-PBMCs were activated with Phorbol-Myristate-Acetate/Ionomycin/Monensin for 5 hours immediately after isolation while Cryo-PBMCs were identically activated after thawing and cell resting. Activated cells were fixed, permeabilized and intracellular cytokine staining was performed using Phycoerythrin (PE)-conjugated antibodies for Interleukin-2 (IL-2), Tumor Necrosis Factor-alpha (TNF-a), and Interferon-gamma (IFN-g). All samples were analyzed within 24 hours by flow cytometry. Results: Both Fresh and Cryo CD3+CD4+/CD3+CD4- sub-populations partially produced each of the three cytokines. A higher percentage of CD4+ T cells produced IL-2 and TNF-a and a greater percentage of CD4- T cells were found to produce IFN-g. A significantly higher percentage of Cryo-lymphocytes was shown to produce TNF-a in both CD3+CD4+ (31.4% vs 24.9%, p=0.031) and CD3+CD4- (22.7% vs 17.9%, p=0.031) subpopulations. No notable difference was found for IL-2 and IFN-g production between Fresh and Cryo T cells. Conclusion: Cryopreservation for up to 3 months significantly increases TNF-a production of T-cells in clinically healthy middle-aged subjects.


Sign in / Sign up

Export Citation Format

Share Document