An experimental study on fuel energy saving in gasoline engines using GNP as a lubricant additive

2021 ◽  
pp. 146808742110396
Author(s):  
Gurtej Singh ◽  
Mohammad Farooq Wani ◽  
Mohammad Marouf Wani

This study concentrates on enhancing the performance of the gasoline engine through nano-lubrication. The effect of Graphene nano-platelets (GNP) as lubricant additives in SAE 15W40 oil on the fuel energy consumption and piston ring wear is investigated. GNP-filled lubricating oil boosted the brake strength, engine torque, and mechanical efficiency, whereas the gasoline engine’s brake specific fuel consumption (BSFC) decreased by 5.3%–6.5% due to a 1.7%–3.46% improvement in engine mechanical efficiency. Further, emission results showed that the GNP-filled lubricating oil reduced the emissions of the engine by approximately 3%–6% as compared to the virgin lubricating oil. Furthermore, the piston ring wear was found to reduce by using GNP-filled nano-lubricant. The characterization of the worn piston ring surfaces showed that the tribo-film formed on wear tracks resulted in the improved performance of the engine thereby reducing abrasive wear and surface roughness. From these studies, an attempt has been made to co-relate engine performance characteristics with tribological perception to contribute in the direction of energy savings and fuel economy.

Author(s):  
Seiichi Shiga ◽  
Kenji Nishida ◽  
Shizuo Yagi ◽  
Youichi Miyashita ◽  
Yoshiharu Yuzawa ◽  
...  

This paper presents further investigation into the effect of over-expansion cycle with late-closing of intake valves on the engine performance in gasoline engines. A larger single-cylinder test engine with the stroke volume of 650 cc was used with four kinds of expansion ratio (geometrical compression ratio) from 10 to 25 and four sets of intake valve closure (I.V.C.) timings from 0 to 110 deg C.A. ABDC. Late-closing has an effect of decreasing the pumping work due to the reduction of intake vacuum, althogh higher expansion ratio increases the friction work due to the average cylinder pressure level. Combining the higher expansion ratio with the late-closing determines the mechanical efficiency on the basis of these two contrastive effects. The indicated thermal efficiency is mostly determined by the expansion ratio and little affected by the nominal compression ratio. The value of the indicated thermal efficiency reaches to 48% at most which is almost comparable with the value of diesel engines. The improvement of both indicated and brake thermal efficiency reaches to 16% which is much higher than ever reported by the authors. A simple thermodynamic calculation could successfully explain the behavior of the indicated thermal efficiency. The brake thermal efficiency could also be improved due to the increase in both mechanical and indicated efficiencies.


Author(s):  
Ali Kilicarslan ◽  
Mohamad S. Qatu

Performance investigation of a Chevrolet 5.7, eight cylinder gasoline engine is experimentally carried out at laboratuary conditions by means of the special softwares called “NetDyn” and “WinDyn”. This experimental work is intended to make contribution to the researchers that experimentally analyze the parameters of gasoline engines with the engine speed in detail. During the experiments, the engine speed is changed from 2500 rpm to 5250 rpm with 250 rpm intervals and steptime for succesive speeds is kept constant as 10 s. Engine power, engine torque, fuel and air flowrates per kW, mechanical efficiency, oil temperature and pressure, break mean effective pressure and exhaust temperatures are measured as a function of engine speed. As the engine speed was increased, it was observed that the air mass flow rate, exhaust and oil temperatures increased while the break mean effective pressure, mechanical volumetric efficiency, and engine torque decreased. Engine power increased between the engine speeds of 2500 rpm and 3750, but it decreased between the speeds of 3750 rpm 5246 rpm.


Author(s):  
H H Masjuki ◽  
M A Maleque

Results of study on wear of piston rings, engine performance and exhaust gas emissions of palm oil methyl ester (POME) as a lubricating oil additive in a two-stroke gasoline engine test are presented. Piston ring wear behaviour was monitored as a function of running time. The power output and brake specific fuel consumption of the engine were measured at different speeds. Varnish/lacquer and carbon deposit on the spark plug electrode, cylinder and piston heads as well as exhaust gas (CO2, CO and O2) emission were measured. For comparison purposes, two types of commercial lubricating oils, viz. oil A and oil B were used. The wear resistance of piston rings with POME blending lubrication was found to be greater than the pure commercial oil lubrication. Other results indicate that the POME acts as an additive which improves the engine performance and exhaust emissions of two-stroke gasoline engines.


2011 ◽  
Vol 317-319 ◽  
pp. 1999-2006
Author(s):  
Yu Wan ◽  
Ai Min Du ◽  
Da Shao ◽  
Guo Qiang Li

According to the boost mathematical model verified by experiments, the valve train of traditional gasoline engine is optimized and improved to achieve extended expansion cycle. The simulation results of extended expansion gasoline engine shows that the extended expansion gasoline engine has a better economic performance, compared to traditional gasoline engines. The average brake special fuel consumption (BSFC) can reduce 22.78 g / kW•h by LIVC, but the negative impacts of extended expansion gasoline engine restrict the potential of extended expansion gasoline engine. This paper analyzes the extended expansion gasoline engine performance under the influence of LIVC, discusses the way to further improve extended expansion gasoline engine performance.


2003 ◽  
Vol 125 (4) ◽  
pp. 1081-1089 ◽  
Author(s):  
Y. Piao ◽  
S. D. Gulwadi

The role of cylinder bore shapes in engine performance has been the subject of several studies in recent years. In particular, the influence of bore distortion on oil consumption under high speed conditions has generated significant interest. In this paper, the effect of an axial bore profile on radial dynamics of a ring is investigated. Radial ring motions within grooves due to the axial bore profile can generate significant inertial effects and also have an impact on ring end-gap sizes and lubrication conditions at the ring-liner interfaces. The magnitude of such effects is dependent on the ring-pack configuration, engine operating conditions (speed and load) and axial bore profile details. These issues are investigated in this study due to their implication on engine oil consumption, friction and blow-by. The authors have developed an analytical expression to account for the effects of radial ring inertia due to an axial bore profile for implementation in a piston ring-pack simulation tool RINGPAK. Simulation results from a gasoline engine study are presented to illustrate the effects of engine speeds, ring tensions, and characteristics of axial bore profiles on ring radial dynamics and ring-liner lubrication. Relevant qualitative comparisons are made to experimental measurements available in the literature.


2013 ◽  
Vol 315 ◽  
pp. 20-24 ◽  
Author(s):  
Taib Iskandar Mohamad ◽  
Mark Jermy ◽  
Matthew Harrison

Power reduction when converting a gasoline engine to propane can be mitigated by designing an injection system so the heat required for evaporation of the propane is drawn from the intake air. Air is cooled and densified, resulting in volumetric efficiency increase. LPG sprays were imaged using Mie and LIF imaging techniques from a port fuel injector, and from long and short connecting pipes. Images were taken in an optically-accessed pressure chamber at atmospheric pressure and fuel pressures of 1.5 MPa. Images of the pipe-coupled injection spray show significant evaporation in the pipe, whose amount depend on the length and diameter of the pipe. The duration of the LPG pulse at the manifold end is, for 300mm pipes, five times the original duration at the injector, and even greater for 600mm pipes. The narrow sprays and the amount of evaporation that occurs before the fuel enters the manifold explains the differences in engine torque and in-cylinder mixture temperature with the different systems.


2020 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Abdi Hanra Sebayang ◽  
Husin Ibrahim ◽  
Surya Dharma ◽  
Arridina Susan Silitonga ◽  
Berta Br Ginting ◽  
...  

The depletion of fossil fuels, rising of earth temperatures and declining of air quality are an unavoidable phenomenon today. Bioethanol fuel is one solution to reduce this problem that comes from renewable raw materials. The purpose of this study is to investigate engine performance and exhaust emissions at gasoline engine by using the sorghum seeds bioethanol-pertalite blends with different mixed ratios (10%, 15%, and 20%). The test is performed on a four-stroke gasoline engine without modification. Engine speeds vary from 1000 to 4000 rpm, and properties of the sorghum seeds bioethanol-pertalite blends are measured and analyzed. In addition, engine torque, brake power, brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) as well as carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) emissions are measured. The results show that BSFC decreased while BTE increased for a fuel blends containing 20% bioethanol at 3500 rpm engine speed, with each maximum value of 246.93 g/kWh and 36.28%. It is also found that CO and HC emissions are lower for the sorghum seeds bioethanol-pertalite blends. Based on the research results, it can be concluded that the sorghum seeds bioethanol-pertalite blends can improve engine performance and reduce exhaust gas emissions. Keywords: bioethanol; pertalite; performance engine; exhaust gas emission; alternatif fuel.


Author(s):  
Thanh Vo Xuan ◽  
Dung Do Van ◽  
Quoc Hoang An

Hydrogen fuel becomes an alternative fuel because of its advantage properties. Hydrogen fuel can be used in form of H2 or HHO. On the dual-fuel systems, hydrogen may be supplied to engines by injectors or by the differential pressure in the intake manifold. This paper presented the applicability of hydrogen on gasoline engines. The paper analyzed and evaluated the methods of hydrogen fuel applications, the results of the performance and engine emissions of the latest researches in over the world. The experiments were performed at hydrogen volume ratio from 1% to 4.5% and different experimental conditions. The experimental results were compared with only-gasoline engines. The combustion cylinders pressure is increased. The thermal efficiency is increased to 7%. The emission of HC and CO emissions are decreased significantly. NOx is reduced at learn conditions and increased at other conditions.


Author(s):  
S C Kyriakides ◽  
A R Glover

This paper describes an investigation into the effects of in-cylinder air motion at the spark plugs on gasoline engine performance. Measurements of combustion angles have been made in a single-cylinder four-stroke disc combustion chamber engine at part load and MBT ignition timing. Seventeen in-cylinder air motion regimes have been produced using masked valves. The air motion in each build has been evaluated by making laser Doppler anemometry (LDA) measurements of mean velocity and turbulence intensity at the spark plug position under motored conditions. It has been shown that there is a strong correlation between turbulence intensity and 10–90 per cent burn angle. It is demonstrated that for this combustion chamber geometry a tumbling air motion is a more effective means of generating turbulence at TDC than swirl.


2012 ◽  
Vol 455-456 ◽  
pp. 1084-1089
Author(s):  
Jian Guo Yang ◽  
Yan Yan Wang ◽  
Bo Lin

. It is difficult to detect critical knock for a gasoline engine by the common method of knock diagnosis. In this paper, a new approach is presented to detect critical knock for gasoline engines. Based on this approach knock diagnosis consists of four steps. Firstly, discrete wavelet transform (DWT) is chosen as a pre-processor for a neural network to extract knock characteristic signals; Secondly, four characteristic factors are selected and calculated from knock characteristic signals; Thirdly, degree of memberships of the characteristic factors are calculated as the input and output of the neural network; and finally a RBF(Radial Basis Function) neural network is chosen, trained and applied to detect critical knock. Knock experiments were performed on a gasoline engine, and the application of the presented approach was studied. The results show that the presented method is practicable and can be applied to control the ignition of a gasoline engine working under critical knock which is admitted as an improved state of engine performance.


Sign in / Sign up

Export Citation Format

Share Document