scholarly journals Study of the mechanisms of aldosterone prothrombotic effect in rats

2011 ◽  
Vol 12 (4) ◽  
pp. 430-439 ◽  
Author(s):  
Anna Gromotowicz ◽  
Janusz Szemraj ◽  
Adrian Stankiewicz ◽  
Agnieszka Zakrzeska ◽  
Maria Mantur ◽  
...  

Introduction: We investigated the role of primary haemostasis, fibrinolysis, nitric oxide (NO) and oxidative stress as well as mineralocorticoid receptors (MR) in acute aldosterone prothrombotic action. Materials and methods: Venous thrombosis was induced by stasis in Wistar rats. Aldosterone (ALDO; 10, 30, 100 µg/kg/h) was infused for 1 h. Eplerenone (EPL; 100 mg/kg, p.o.), a selective MR antagonist, was administered before ALDO infusion. Bleeding time (BT) and platelet adhesion to collagen were evaluated. The expression of nitric oxide synthase (NOS), NADPH oxidase, superoxide dismutase (SOD) and plasminogen activator inhibitor (PAI-1) was measured. NO, malonyl dialdehyde (MDA) and hydrogen peroxide (H2O2) plasma levels were assayed. Results: Significant enhancement of venous thrombosis was observed after ALDO infusion. ALDO shortened BT and increased platelet adhesion. Marked increases were observed in PAI-1, NADPH oxidase and SOD mRNA levels. MDA and H2O2 levels were augmented in ALDO-treated groups, and NOS expression and NO level were decreased. EPL reduced ALDO effects on thrombus formation, primary haemostasis, PAI-1 expression and MDA level. Conclusion: Short-term ALDO infusion enhances experimental venous thrombosis in the mechanism involving primary haemostasis, fibrinolysis, NO and oxidative stress-dependent pathways. The MR antagonist only partially diminished the ALDO effects, suggesting the involvement of additional mechanisms.

Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3416-3425 ◽  
Author(s):  
Laura A. Bienvenu ◽  
James Morgan ◽  
Amanda J. Rickard ◽  
Greg H. Tesch ◽  
Greg A. Cranston ◽  
...  

Mineralocorticoid receptor (MR) activation promotes the development of cardiac fibrosis and heart failure. Clinical evidence demonstrates that MR antagonism is protective even when plasma aldosterone levels are not increased. We hypothesize that MR activation in macrophages drives the profibrotic phenotype in the heart even when aldosterone levels are not elevated. The aim of the present study was to establish the role of macrophage MR signaling in mediating cardiac tissue remodeling caused by nitric oxide (NO) deficiency, a mineralocorticoid-independent insult. Male wild-type (MRflox/flox) and macrophage MR-knockout (MRflox/flox/LysMCre/+; mac-MRKO) mice were uninephrectomized, maintained on 0.9% NaCl drinking solution, with either vehicle (control) or the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 150 mg/kg/d) for 8 wk. NO deficiency increased systolic blood pressure at 4 wk in wild-type l-NAME/salt-treated mice compared with all other groups. At 8 wk, systolic blood pressure was increased above control in both l-NAME/salt treated wild-type and mac-MRKO mice by approximately 28 mm Hg by l-NAME/salt. Recruitment of macrophages was increased 2- to 3-fold in both l-NAME/salt treated wild-type and mac-MRKO. Inducible NOS positive macrophage infiltration and TNFα mRNA expression was greater in wild-type l-NAME/salt-treated mice compared with mac-MRKO, demonstrating that loss of MR reduces M1 phenotype. mRNA levels for markers of vascular inflammation and oxidative stress (NADPH oxidase 2, p22phox, intercellular adhesion molecule-1, G protein-coupled chemokine receptor 5) were similar in treated wild-type and mac-MRKO mice compared with control groups. In contrast, l-NAME/salt treatment increased interstitial collagen deposition in wild-type by about 33% but not in mac-MRKO mice. mRNA levels for connective tissue growth factor and collagen III were also increased above control treatment in wild-type (1.931 ± 0.215 vs. 1 ± 0.073) but not mac-MRKO mice (1.403 ± 0.150 vs. 1.286 ± 0.255). These data demonstrate that macrophage MR are necessary for the translation of inflammation and oxidative stress into interstitial and perivascular fibrosis after NO deficiency, even when plasma aldosterone is not elevated.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1191
Author(s):  
Albino Carrizzo ◽  
Rosario Lizio ◽  
Paola Di Pietro ◽  
Michele Ciccarelli ◽  
Antonio Damato ◽  
...  

In recent years, epidemiological studies have identified a relationship between diet and cerebro–cardiovascular disease (CVD). In this regard, there is a promising dietary group for cardiovascular protection are polyphenols, especially anthocyanins. Vascular reactivity studies were performed using Healthberry 865® and constituent single anthocyanins to characterize vasomotor responses; immunofluorescence analysis with dichlorofluorescein diacetate and dihydroethidium were used to evaluate nitric oxide and oxidative stress; lucigenin assay was used to measure NADPH oxidase activity; and gel electrophoresis and immunoblotting were used to dissect the molecular mechanisms involved. We demonstrated that Healthberry 865® exerts an important vasorelaxant effect of resistance artery functions in mice. Its action is mediated by nitric oxide release through the intracellular signaling PI3K/Akt. Moreover, behind its capability of modulating vascular tone, it also exerts an important antioxidant effect though the modulation of the NADPH oxidase enzyme. Interestingly, its cardiovascular properties are mediated by the selective action of different anthocyanins. Finally, the exposure of human dysfunctional vessels to Healthberry 865® significantly reduces oxidative stress and improves NO bioavailability. Although further investigations are needed, our data demonstrate the direct role of Healthberry 865® on the modulation of vasculature, both on the vasorelaxation and on oxidative stress; thus, supporting the concept that a pure mixture of anthocyanins could be helpful in preventing the onset of vascular dysfunction associated with the development of CVD.


2011 ◽  
Vol 35 (4) ◽  
pp. 418-425 ◽  
Author(s):  
Saowanee Nakmareong ◽  
Upa Kukongviriyapan ◽  
Poungrat Pakdeechote ◽  
Veerapol Kukongviriyapan ◽  
Bunkerd Kongyingyoes ◽  
...  

2015 ◽  
Vol 34 (4) ◽  
pp. 300-307 ◽  
Author(s):  
Swati Omanwar ◽  
M. Fahim

Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Srinivas Sriramula ◽  
Huijing Xia ◽  
Eric Lazartigues

Elevated reactive oxygen species (ROS) in the central nervous system (CNS) through NADPH oxidase and diminished Nitric oxide (NO) levels are involved in the pathogenesis of hypertension. We previously reported that central Angiotensin Converting Enzyme 2 (ACE2) overexpression prevents the development of hypertension induced by DOCA-salt in a transgenic mouse model (syn-hACE2; SA) with human ACE2 targeted selectively to neurons in the CNS. While baseline blood pressure (BP; telemetry) was not different among genotypes, DOCA-salt treatment (1mg/g body wt DOCA, 1% saline in drinking water for 3 weeks) resulted in significantly lower BP level in SA mice (122 ±3 mmHg, n=12) compared to non-transgenic (NT) littermates (138 ±3 mmHg, n=8). To elucidate the mechanisms involved in this response, we investigated the paraventricular nucleus (PVN) expression of Nox-2 (catalytic subunit of NADPH oxidase), 3-nitrotyrosine, and endothelial nitric oxide synthase (eNOS) and anti-oxidant enzymes superoxide dismutase (SOD) and catalase in the hypothalamus. DOCA-salt treatment resulted in decreased catalase (95.2 ±5.6 vs. 113.8 ±17.6 mmol/min/ml, p<0.05) and SOD (4.1 ±0.4 vs. 5.9 ±0.2 U/ml, p<0.01) activities in hypothalamic homogenates of NT mice, which was prevented by ACE2 overexpression (141.8 ±9.9 vs. 142.1 ±9.2 mmol/min/ml and 5.9 ±0.3 vs. 7.9 ±0.2 U/ml, respectively). NT mice treated with DOCA-salt showed increased oxidative stress as indicated by increased expression of Nox-2 (61 ±5 % increase, n=9, p<0.001 vs. NT) and 3-nitrotyrosine (89 ±32 % increase, n=9, p<0.01 vs. NT) in the PVN which was attenuated in SA mice. Furthermore, DOCA-salt hypertension resulted in decreased phosphorylation of eNOS-ser1177 in the PVN (33 ±5 % decrease, n=9, p<0.05 vs NT) and this decrease was prevented by ACE2 overexpression. Taken together, these data provide evidence that brain ACE2 regulates the balance between NO and ROS levels, thereby preventing the development of DOCA-salt hypertension.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hideyuki Sasaki ◽  
Hiroshi Asanuma ◽  
Masashi Fujita ◽  
Hiroyuki Takahama ◽  
Masanori Asakura ◽  
...  

Background; Several studies have shown that metformin activates AMP-activated protein kinase (AMPK), which mediates potent cardioprotection against ischemia-reperfusion injury. AMPK is also activated in experimental failing myocardium, suggesting that activation of AMPK is beneficial for the pathophysiology of heart failure. We investigated whether metformin prevents oxidative stress-induced cell death in rat cardiomyocytes and attenuates the progression of heart failure in dogs. Methods and Results; The treatment with metformin (10 μmol/L) protected the rat cultured cardiomyocytes against cell death due to H 2 O 2 exposure (50 μmol/L) as indicated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), TUNEL staining, and flow cytometry. These effects were blunted by an AMPK inhibitor, compound-C (20 μmol/L), suggesting that the activation of AMPK decreased the extent of apoptosis-induced cell death due to H 2 O 2 exposure. Continuous rapid ventricular pacing (230/min for 4 weeks) in dogs caused heart failure and the treatment with metformin (100 mg/kg/day PO, n=8) decreased left ventricular (LV) end-diastolic dimension (32.8±0.4 vs. 36.5±1.0 mm, p< 0.01) and pressure (11.8±1.1 vs. 22±0.9 mmHg, p< 0.01), and increased LV fractional shortening (18.6±1.8 vs. 9.6±0.7 %, p< 0.01) along with enhanced phosphorylation of AMPK and the decreased the number of TUNEL-positive cells of the LV myocardium compared with the vehicle group (n=8). Interestingly, metformin increased the protein and mRNA levels of endothelial nitric oxide synthase of the LV myocardium and plasma nitric oxide levels. Metformin improved the plasma insulin resistance without increased myocardial GLUT-4 translocation. Furthermore, the subcutaneous administration of AICAR (50 mg/kg/every other day), another AMPK activator mediated the equivalent effects to metformin, strengthening the pivotal role of AMPK in reduction of apoptosis and prevention of heart failure. Conclusions; Activation of myocardial AMPK attenuated the oxidative stress-induced cardiomyocyte apoptosis and prevented the progression of heart failure in dogs, along with eNOS activation. Thus, metformin or AICAR may be applicable as a novel therapy for heart failure.


2017 ◽  
Vol 5 (1) ◽  
pp. 71 ◽  
Author(s):  
Wael Alanazi ◽  
Mohammad Uddin ◽  
Selim Fakhruddin ◽  
Keith Jackson

Background: Recurrent insulin-induced hypoglycemia (RIIH) is an avoidable consequence in the therapeutic management of diabetes mellitus. RIIH has been implicated in causing hypertension through an increase in renal and systemic AngII production.Objective: The present study was performed to assess the hypothesis that chronic insulin treatment enhances AngII and COX2 formation which in turn increases (pro) renin receptor (PRR) expression and NADPH oxidase-mediated oxidative stress, leading to renal and cardiac injury.Methods: The present studies were conducted in Male Sprague Dawley rats treated with daily subcutaneous injections of 7u/kg insulin or saline for 14 days. On the 14th day, surgery was performed for treatment infusion (captopril 12mg/kg, NS398 0.3mg/kg or vehicle), and renal interstitial fluid sample and urine collections for biomarker measurements. At the end of the experiments, kidneys and hearts were harvested to evaluate PRR and NOX2 (NADPH oxidase subunit) expression and oxidative stress.Results: We found that RIIH enhanced AngII and COX2 activity, leading to renal PRR expression and NADPH oxidase-induced oxidative stress in the heart and kidney. 8-isoprostane was evaluated as a renal biomarker of oxidative stress, which was induced in insulin treated animals and modulated by captopril and NS398. In addition, there was a slight increase in NGAL, a urinary biomarker of acute kidney injury (AKI), in insulin treated animals when compared to control.Conclusion: These results demonstrate that RIIH induces renal PRR expression and oxidative stress through increasing AngII and COX2 in the heart and kidney, leading to end-organ damage.


2006 ◽  
Vol 291 (1) ◽  
pp. G26-G34 ◽  
Author(s):  
Hideki Nakatsuka ◽  
Takaaki Sokabe ◽  
Kimiko Yamamoto ◽  
Yoshinobu Sato ◽  
Katsuyoshi Hatakeyama ◽  
...  

Partial hepatectomy causes hemodynamic changes that increase portal blood flow in the remaining lobe, where the expression of immediate-early genes, including plasminogen activator inhibitor-1 (PAI-1), is induced. We hypothesized that a hyperdynamic circulatory state occurring in the remaining lobe induces immediate-early gene expression. In this study, we investigated whether the mechanical force generated by flowing blood, shear stress, induces PAI-1 expression in hepatocytes. When cultured rat hepatocytes were exposed to flow, PAI-1 mRNA levels began to increase within 3 h, peaked at levels significantly higher than the static control levels, and then gradually decreased. The flow-induced PAI-1 expression was shear stress dependent rather than shear rate dependent and accompanied by increased hepatocyte production of PAI-1 protein. Shear stress increased PAI-1 transcription but did not affect PAI-1 mRNA stability. Functional analysis of the 2.1-kb PAI-1 5′-promoter indicated that a 278-bp segment containing transcription factor Sp1 and Ets-1 consensus sequences was critical to the shear stress-dependent increase of PAI-1 transcription. Mutations of both the Sp1 and Ets-1 consensus sequences, but not of either one alone, markedly prevented basal PAI-1 transcription and abolished the response of the PAI-1 promoter to shear stress. EMSA and chromatin immunoprecipitation assays showed binding of Sp1 and Ets-1 to each consensus sequence under static conditions, which increased in response to shear stress. In conclusion, hepatocyte PAI-1 expression is flow sensitive and transcriptionally regulated by shear stress via cooperative interactions between Sp1 and Ets-1.


Sign in / Sign up

Export Citation Format

Share Document