Optimization of 3D woven preform for improved mechanical performance

2018 ◽  
Vol 48 (7) ◽  
pp. 1206-1227 ◽  
Author(s):  
Muhammad Kashif ◽  
Syed Talha Ali Hamdani ◽  
Yasir Nawab ◽  
Muhammad Ayub Asghar ◽  
Muhammad Umair ◽  
...  

For structural design applications, through-thickness characteristics of reinforcement played a vital role, which is why 3D woven preforms are recommended for such applications. These characteristics are mainly dependent on the fiber and yarn positioning in reinforcement. Although research has been conducted for characterizing woven composites, special attention has not been made on weave pattern parameter which directly affects the mechanical performance of composites. In this research work, 3D orthogonal layer to layer and through thickness woven structures with different interlocking patterns have been thoroughly studied for their mechanical properties, thickness, air permeability and areal density. Natural fibers when used with biodegradable matrix find use in structural, as well as low to medium impact applications for automobiles. Jute yarn was used to produce four-layered 3D woven structures, as synthetic fibers will not give a biodegradable composite part. The focus of this study is to optimize weave pattern, which is robust in design, degradable preforms and easy to reproduce. The main objective of this research focused on the effectiveness of weaving patterns on physical and mechanical properties as well as to optimize the weave pattern for optimum performance. Grey relational analysis was used for the optimization of the robust weave pattern. The results showed that hybrid structures can be useful for improving the properties of the orthogonal layer to layer and through thickness woven structures. It was also noted that weft-way 3D woven structures can provide comparable mechanical properties with warp-way 3D woven structures.

2019 ◽  
Vol 50 (2) ◽  
pp. 133-148 ◽  
Author(s):  
Senthil Kumar ◽  
S Balachander

Process optimization is the key task of any engineering application to maximize the desirable output by optimizing the range of process parameters. In this research work, jute composites were fabricated by the hand lay-up method with the aim of optimizing the process parameter such as yarn linear density, fabric areal density and fabric laying angle on the mechanical properties of the textile composite structures using the Taguchi L9 orthogonal matrix. The plain-woven and twill-woven fabrics of Jute fabrics were produced through specialized handloom machine and used as preform for composite production. Epoxy resin was used as the matrix component. Signal-to-noise ratio ratio, analysis of variance and experimental verification of results were analysed. The results showed that fabric laying angle played major role to achieve high mechanical properties of composites and twill-woven structural reinforcement yields higher mechanical properties. Subsequent to this optimal process, parameters have been arrived for all the composites, and finally it was verified through the experimental results.


2021 ◽  
pp. 073168442110140
Author(s):  
Hossein Ramezani-Dana ◽  
Moussa Gomina ◽  
Joël Bréard ◽  
Gilles Orange

In this work, we examine the relationships between the microstructure and the mechanical properties of glass fiber–reinforced polyamide 6,6 composite materials ( V f = 54%). These materials made by thermocompression incorporate different grades of high fluidity polyamide-based polymers and two types of quasi-UD glass fiber reinforcement. One is a classic commercial fabric, while the other specially designed and manufactured incorporates weaker tex glass yarns (the spacer) to increase the planar permeability of the preform. The effects of the viscosity of the polymers and their composition on the wettability of the reinforcements were analyzed by scanning electron microscopy observations of the microstructure. The respective influences of the polymers and the spacer on the mechanical performance were determined by uniaxial tensile and compression tests in the directions parallel and transverse to the warp yarns. Not only does the spacer enhance permeability but it also improves physical and mechanical properties: tensile longitudinal Young’s modulus increased from 38.2 GPa to 42.9 GPa (13% growth), tensile strength increased from 618.9 MPa to 697 MPa (3% growth), and decrease in ultimate strain from 1.8% to 1.7% (5% reduction). The correlation of these results with the damage observed post mortem confirms those acquired from analyses of the microstructure of composites and the rheological behaviors of polymers.


2021 ◽  
Vol 32 ◽  
pp. 85-97
Author(s):  
Gunturu Bujjibabu ◽  
Vemulapalli Chittaranjan Das ◽  
Malkapuram Ramakrishna ◽  
Konduru Nagarjuna

Banana/Coir fiber reinforced polypropylene hybrid composites was formulated by using twin screw extruder and injection molding machine. Specimens were prepared untreated and treated B/C Hybrid composites with 4% and 8% of MA-g-PP to increase its compatibility with the polypropylene matrix. Both the without MA-g-PP and with MA-g-PP B/C hybrid composites was utilized and three levels of B/C fiber loadings 15/5, 10/10 and 5/15 % were used during manufacturing of B/C reinforced polypropylene hybrid composites. In this work mechanical performance (tensile, flexural and impact strengths) of untreated and treated (coupling agent) with 4% and 8% of MA-g-PP B/C fibers reinforced polypropylene hybrid composite have been investigated. Treated with MA-g-PP B/C fibers reinforced specimens explored better mechanical properties compared to untreated B/C fibers reinforced polypropylene hybrid composites. Mechanical tests represents that tensile, flexural and impact strength increases with increase in concentration of coupling agent compared to without coupling agent MA-g-PP hybrid composites . B/C fibers reinforced polymer composites exhibited higher tensile, flexural and impact strength at 5% of Banana fiber, 15% of fiber Coir in the presence of 8% of MA-g-PP compared to 4% of MA-g-PP and untreated hybrid composites. The percentage of water absorption in the B/C fibers reinforced polypropylene hybrid composites resisted due to the presence of coupling agent MA-g-PP and thermogravimetry analysis (TGA) also has done.


2021 ◽  
Vol 25 (109) ◽  
pp. 88-97
Author(s):  
Carlos Magno Chavarry Vallejos ◽  
Liliana Janet Chavarría Reyes ◽  
Xavier Antonio Laos Laura ◽  
Andrés Avelino Valencia Gutiérrez ◽  
Enriqueta Pereyra Salardi ◽  
...  

El presente artículo tiene como objetivo determinar la influencia de la adición del dióxido de titanio (TiO2) en el mortero de cemento Pórtland Tipo I. La investigación es descriptiva, correlacional, explicativo, con diseño experimental, longitudinal, prospectivo y estudio de cohorte. Se elaboró una mezcla patrón y tres mezclas de mortero con 5%, 7.5% y 10% de contenido de TiO2 como reemplazo del volumen de cemento para las propiedades autolimpiantes se realizó el ensayo de rodamina e intemperismo. La incorporación de dióxido de titanio disminuyó la resistencia a la compresión, incrementó la fluidez y tasa de absorción de agua; la prueba de rodamina dio que el mortero sin actividad fotocatalítico no contenía TiO2 porque no cumple con los factores de fotodegradación R4 y R26. Mediante la exposición de paneles al intemperismo favoreciendo la propiedad autolimpiante de los morteros con adición de TiO2 (5%). Palabras Clave: Actividad foto catalítico, dióxido de titanio, factores de fotodegradación, propiedades mecánicas y autolimpiante. Referencias [1]E. Medina and H. Pérez, “Influencia del fotocatalizador dióxido de titanio en las propiedades autolimpiables y mecánicas del mortero de cemento - arena 1:4 - Cajamarca,” Universidad Nacional de Cajamarca, 2017. [2]G. Abella, “Mejora de las propiedades de materiales a base de cemento que contienen TiO 2 : propiedades autolimpiantes,” Universidad Politécnica de Madrid, 2015. [3]J. Gonzalez, “El Dióxido de titanio como material fotocatalitico y su influencia en la resistencia a la compresión en Morteros,” Universidad de San Buenaaventura Seccional Bello, 2015. [4]D. Jimenez and J. Moreno, “Efecto del reemplazo de cemento portland por el dioido de titanio en las propiedades mecanicas del mortero,” Pontificia Universidad Javeriana, 2016. [5]L. Wang, H. Zhang, and Y. Gao, “Effect of TiO2 nanoparticles on physical and mechanical properties of cement at low temperatures,” Adv. Mater. Sci. Eng., 2018, doi: 10.1155/2018/8934689. [6]Comisión de Normalización y de Fiscalización de Barreras Comerciales no Arancelares, Norma Técnica Peruana. Perú, 2013, p. 29. [7]ASTM Internacional, “ASTM C150,” 2021. https://www.astm.org/Database.Cart/Historical/C150-07-SP.htm. [8]M. Issa, “( current astm c150 / aashto m85 ) with limestone and process addition ( ASTM C465 / AASHTO M327 ) on the performance of concrete for pavement and Prepared By,” 2014. [9]S. Zailan, N. Mahmed, M. Abdullah, A. Sandu, and N. Shahedan, “Review on characterization and mechanical performance of self-cleaning concrete,” MATEC Web Conf., vol. 97, pp. 1–7, 2017, doi: 10.1051/matecconf/20179701022. [10]C. Chavarry, L. Chavarría, A. Valencia, E. Pereyra, J. Arieta, and C. Rengifo, “Hormigón reforzado con vidrio molido para controlar grietas y fisuras por contracción plástica,” Pro Sci., vol. 4, no. 31, pp. 31–41, 2020, doi: 10.29018/issn.2588-1000vol4iss31.2020pp31-41. [11]D. Tobaldi, “Materiali ceramici per edilizia con funzionalità fotocatalitica,” Università di Bologna, 2009. [12]Norme UNI, “Norma Italiana UNI 11259,” 2016. http://store.uni.com/catalogo/uni-11259-2008?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com. [13]E. Grebenisan, H. Szilagyi, A. Hegyi, C. Mircea, and C. Baera, “Directory lines regarding the desing and production of self-cleaning cementitious composites,” Sect. Green Build. Technol. Mater., vol. 19, no. 6, 2019. [14]M. Kaszynska, “The influence of TIO2 nanoparticles on the properties of self-cleaning cement mortar,” Int. Multidiscip. Sci. GeoConference SGEM, pp. 333–341, 2018.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4801
Author(s):  
Yasir Khaleel Kirmasha ◽  
Mohaiman J. Sharba ◽  
Zulkiflle Leman ◽  
Mohamed Thariq Hameed Sultan

Fiber composites are known to have poor through-thickness mechanical properties due to the absence of a Z-direction binder. This issue is more critical with the use of natural fibers due to their low strength compared to synthetic fibers. Stitching is a through-thickness toughening method that is used to introduce fibers in the Z-direction, which will result in better through-thickness mechanical properties. This research was carried out to determine the mechanical properties of unstitched and silk fiber-stitched woven kenaf-reinforced epoxy composites. The woven kenaf mat was stitched with silk fiber using a commercial sewing machine. The specimens were fabricated using a hand lay-up method. Three specimens were fabricated, one unstitched and two silk-stitched with deferent stitching orientations. The results show that the stitched specimens have comparable in-plane mechanical properties to the unstitched specimens. For the tensile mechanical test, stitched specimens show similar and 17.1% higher tensile strength compared to the unstitched specimens. The flexural mechanical test results show around a 9% decrease in the flexural strength for the stitched specimens. On the other hand, the Izod impact mechanical test results show a significant improvement of 33% for the stitched specimens, which means that stitching has successfully improved the out-of-plane mechanical properties. The outcome of this research indicates that the stitched specimens have better mechanical performance compared to the unstitched specimens and that the decrease in the flexural strength is insignificant in contrast with the remarkable enhancement in the impact strength.


2015 ◽  
Vol 766-767 ◽  
pp. 122-132
Author(s):  
Tippusultan ◽  
V.N. Gaitonde

Polymers reinforced with synthetic fibers such as glass and carbon offer advantages of high stiffness and strength to weight ratio compared to conventional materials. Despite these advantages, the prevalent use of synthetic fiber-reinforced polymer composite has a tendency to demur because of high initial cost and most importantly their adverse environmental impact. On the contrary, the increased interest in using natural fibers as reinforcement in plastics to substitute conventional synthetic fibers in automobile applications has become one of the main concerns to study the potential of using natural fibers as reinforcement for polymers. In this regard, an investigative study has been carried out to make potential utilization of natural fibers such as Jute and Coir as reinforcements, which are cheap and abundantly available in India. The objective of the present research work is to study the effects of fiber loading and particle size; fiber loading and fiber length on the mechanical properties of Jute-PP and Coir-PP bio-composites respectively. The experiments were planned as per full factorial design (FFD) and response surface methodology (RSM) based second order mathematical models of mechanical properties have been developed. Analysis of variance (ANOVA) has been employed to check the adequacy of the developed models. From the parametric analysis, it is revealed that Jute-PP bio-composites exhibit better mechanical properties when compared to Coir-PP bio-composites.


Author(s):  
M. D. Monzo´n ◽  
Z. Ortega ◽  
A. N. Beni´tez ◽  
P. M. Herna´ndez ◽  
M. D. Marrero ◽  
...  

Nowadays, the natural fibres market is having an important growth due to the commitment of contemporary society with the sustainable development that leads the natural resources preservation and the environment protection. Fibres from banana food wastes provide high mechanical properties related to other natural fibers such as flax, sisal, hemp, etc. The aim of the present research work is to compare different banana fibres processing in order to improve the matrix fibre adhesion and behavior of fibre under processing conditions. Simple Anova analysis has been implemented on four different formulations: 1. No fibre processing, 2. Alkaline processing with Caustic Soda (NaOH), 3 Maleic Anhydride, 4. Combination of Soda and Maleic Anhydride. Several samples of MTT 8040 resin, under vacuum casting, with silicone moulds, conditions, have been done. Mechanical properties and efficiency factors of adhesion fibre-matrix have been determined and compared.


2013 ◽  
Vol 773-774 ◽  
pp. 478-487
Author(s):  
Juan Pablo Fuertes ◽  
Rodrigo Luri ◽  
Javier León ◽  
Daniel Salcedo ◽  
Ignacio Puertas ◽  
...  

Aluminum foams are porous metallic materials which possess an outstanding combination of physical and mechanical properties such as: a high rigidity with a very low density. In this present research work, a study on the upsetting of an aluminum foam (with a density = 0.73 g/cm3) is carried out by employing different compression velocity values. From the results obtained, it is possible to determine the material flow stress for its subsequent use in finite element simulations (FEM). Once the material flow stress has been determined, it will be employed in order to analyze the conformability of several parts by FEM.


2021 ◽  
Vol 31 (2) ◽  
pp. 81-92
Author(s):  
Lalit Ranakoti ◽  
Pawan Kumar Rakesh ◽  
Brijesh Gangil

Green and sustainable material is the utmost prerequisite for the advancement of a healthy society and fulfilling the necessary for the improvement in material science. Naturally obtaining wood flour has the competence to be reinforced as a filler substance in the polymer composite. The present article deals with the usage of wood flour as a filler in the polymer composite. The article comprises properties, characteristics, occurrence, the structure of wood, and the techniques implemented in the manufacturing of wood flour polymer composites. In addition, critical parameters and causes that can bring changes in the properties like tensile, flexural, impact and hardness of polymers are also discussed with the addition of wood flour alone and with nanoparticles. The advantages of using wood flour as a filler in the thermoset and thermoplastic polymers discussed, and its hybridization with various natural fibers was also discussed in the present study.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6970
Author(s):  
Paweł Niewiadomski ◽  
Anna Karolak ◽  
Damian Stefaniuk ◽  
Aleksandra Królicka ◽  
Jacek Szymanowski ◽  
...  

Recently, the research of innovative building materials is focused on applying supplementary materials in the form of micro- and nanopowders in cementitious composites due to the growing insistence on sustainable development. Considering above, in paper, a research on the effect of microsilica and SiO2 nanoparticles addition to cement paste, designed with Andreasen and Andersen (AA) packing density model (PDM), in terms of its physical and mechanical properties was conducted. Density, porosity, compressive strength, hardness, and modulus of indentation were investigated and compared regarding different amount of additives used in cement paste mixes. Microstructure of the obtained pastes was analyzed. The possibility of negative influence of alkali-silica reaction (ASR) on the mechanical properties of the obtained composites was analyzed. The results of the conducted investigations were discussed, and conclusions, also practical, were presented. The obtained results confirmed that the applied PDM may be an effective tool in cement paste design, when low porosity of prepared composite is required. On the other hand, the application of AA model did not bring satisfactory results of mechanical performance as expected, what was related, as shown by SEM imaging, with inhomogeneous dispersion of microsilica, and creation of agglomerates acting as reactive aggregates, what as a consequence caused ASR reaction, crack occurrence and lowered mechanical properties. Finally, the study found that the use of about 7.5% wt. of microsilica is the optimum in regards to obtain low porosity, while, to achieve improved mechanical properties, the use of 4 wt. % of microsilica seems to be optimal, in the case of tested cement pastes.


Sign in / Sign up

Export Citation Format

Share Document