scholarly journals Antimicrobial Activity of neo-Clerodane Diterpenoids isolated from Lamiaceae Species against Pathogenic and Food Spoilage Microorganisms

2015 ◽  
Vol 10 (11) ◽  
pp. 1934578X1501001 ◽  
Author(s):  
Petko Bozov ◽  
Tania Girova ◽  
Natalia Prisadova ◽  
Yana Hristova ◽  
Velizar Gochev

Antimicrobial activity of nineteen neo-clerodane diterpenoids, isolated from the acetone extracts of the aerial parts of Scutellaria and Salvia species (Lamiaceae) were tested against thirteen strains belonging to nine different species of pathogenic and food spoilage bacteria Aeromonas hydrophila, Bacillus cereus, Escherichia coli, Listeria monocytogenes, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella abony and Staphylococcus aureus as well as against two yeast strains belonging to species Candida albicans. Seven of the evaluated compounds scutalpin A, scutalpin E, scutalpin F, salviarin, splenolide A, splenolide B and splendidin demonstrated antimicrobial activity against used test microbial strains, the rest of the compounds were inactive within the studied concentration range. Among all of the tested compounds the highest antimicrobial activity was detected for scutalpin A against Staphylococcus aureus (MIC 25 μg/mL).

2004 ◽  
Vol 59 (9-10) ◽  
pp. 653-656 ◽  
Author(s):  
Ali Sonboli ◽  
Peyman Salehi ◽  
Morteza Yousefzadi

Abstract The composition and antimicrobial activity of the essential oil of Nepeta crispa Willd., an endemic species from Iran, was studied. The oil was obtained from the aerial parts of the plant and analyzed by GC and GC/MS. Twenty-three compounds, accounting for 99.8% of the total oil, were identified. The main constituents were 1,8-cineol (47.9%) and 4aα,7α,7aβ- nepetalactone (20.3%). The antimicrobial activity of essential oil of N. crispa was tested against seven gram-negative or gram-positive bacteria and four fungi. The results of the bioassays showed the interesting antimicrobial activity, in which the gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, were the most sensitive to the oil. Also, the oil exhibited a remarkable antifungal activity against all the tested fungi.


Author(s):  
H. F. Mafokane ◽  
N. Potgieter ◽  
T. Van Ree

The aerial parts and fruits of Thamnosma africana were investigated for chemical compounds present in them. The volatile oil of T. africana was prepared by hydrodistillation of leaves, flowers and stems, and characterized by GC-MS. The oil was tested for antimicrobial activity on cultures of E. coli, B. subtilis and S.aureus, and found to inhibit Bacillus subtilis and Staphylococcus aureus at 0.1% dilution. The oil was also active against Plasmodium falciparum in micromolar concentrations. Chromatographic separation of the ethyl acetate extract of the aerial parts yielded two isomers of methoxypsoralen (xanthotoxin and bergapten) and 6-(1c,2c-dihydroxy-3c-methyl-3c-butenyl)-7-methoxychromen-2-one (thamnosmonin). The epoxide of thamnosmonin, 6-(1c,2c-epoxy-3c-methylbut-3c-en-1c-yl)-7-methoxychromen-2-one (thamnosmin), and methyl p-isopentenyloxycinnamate were isolated from the hexane extract of the fruits, while another furanocoumarin, 4,9-dimethoxy-7H-furo[3,2-g]benzopyran-7-one (isopimpinellin) was isolated from a dichloromethane extract of the aerial parts.


2010 ◽  
Vol 5 (5) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Takia Lograda ◽  
Adel Nadjib Chaker ◽  
Jean Claude Chalchat ◽  
Messaoud Ramdani ◽  
Hafsa Silini ◽  
...  

The hydrodistilled oils from the aerial parts of Genista ulicina Spach. and G. vepres Pomel., which are endemic to Algeria, were analyzed by gas chromatography-mass spectrometry (GC-MS). In the oil of G. ulicina, 41 compounds were identified representing 90.8% of the total oil, and in G. vepres, 61 compounds representing 84.5% of the total oil. The analyses showed that the major constituents of the oils were lauric acid (14.3% – 8.5%), myristic acid (11.5% – 5%), linoleic acid (3.1% –11.7%) and palmitic acid (18.6% – 26.4%). Using a diffusion method, the oils showed significant antibacterial activities against Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Staphylococcus aureus (ATCC 25923).


2022 ◽  
Vol 1 (2) ◽  
pp. 36-46
Author(s):  
Toheeb D. Yissa ◽  
Wahab O. Okunowo ◽  
Rukayat I. Afolayan ◽  
Abdulakeem R. Agboola ◽  
Halima Y. Lukman ◽  
...  

Background: The purpose of this study was to determine the phytochemical composition and antimicrobial potential of crude n-hexane, ethyl-acetate, methanol and aqueous extracts of Calotropis procera leaves against food spoilage microorganisms. Methods: Standard protocols were employed for the analysis of qualitative phytochemical compositions of the extracts, and antimicrobial activities against Staphylococcus aureus, Bacillus cereus, Pseudomonas aerugenosa and Aspergillus niger. Results: Phytochemical analysis revealed the presence of tannin, saponin, alkaloids, flavonoids, reducing sugar and phenolics. Terpenoids were absent in ethyl acetate and n-hexane extracts while cardiac glycoside was absent in all extracts. All extracts produced antimicrobial activity at a varying zone of inhibition. The widest inhibition zone was produced by methanol extract (21.35±0.43 mm) on staphylococcus aureus while the lowest inhibition zone (12.05±0.45 mm) was observed in the n-hexane fraction. Similarly, the widest inhibition zone (17.24±0.95 mm) was produced by methanol on A. niger while the lowest inhibition zone (5.45±0.42 mm) was produced on n-hexane on A. niger. However, the ethyl acetate extract showed no visible inhibitory zone on all the tested microorganisms. The minimum inhibitory concentration ranged from 32 mg/ml (S. aureus and B. cereus) for ethanol extracts to 128 mg/ml (B. cereus, P. aerugenosa and A. niger) for n-hexane extract. Conclusion: The result shows that the plant is a good source of bioactive compounds that can be used as a natural alternative to a chemical agent in preserving and controlling food poisoning organisms.


2019 ◽  
Vol 18 (5) ◽  
pp. 262-274
Author(s):  
E. Benyagoub ◽  
N. Nabbou ◽  
S. Boukhalkhel ◽  
I. Dehini

The medicinal value of the plants is due to their chemical components that bring a definite physiological action on the human body to prevent the diseases. In this work, we investigated the antimicrobial activity of leaves’ extracts of Quercus robur L., collected from the Algerian upper highlands, on ten bacterial strains and one fungal strain known to be pathogenic. First, we performed a qualitative phytochemical analysis, and second, antimicrobial activity tests performed by agar diffusion method (disc and well) with the determination of MIC by broth macro-dilution method. Given the results, it appears that obtained macerates of Quercus robur L. were rich in bioactive phytoconstituents such as alkaloids, anthraquinones, saponins, tannins, and other components. The yield of aqueous and methanolic macerates of leaves was 8.5 ± 1.41 and 22.4 ± 4.36%, respectively. The bacterial resistance was relatively important to several antibiotics, namely, ampicillin, amoxicillin + clavulanic acid for strains of Escherichia coli and Salmonella sp. However, Staphylococcus aureus strains were resistant to fusidic acid, penicillin, and oxacillin; while Enterococcus faecalis was resistant to fusidic acid, penicillin, oxacillin, and ticarcillin. The antibacterial activity of the macerates toward tested microbial strains showed that the aqueous and methanolic macerates of the leaves were proportional to the tested concentration and active not only against Gram-positive and Gram-negative bacteria but also on the fungal species Candida albicans. The estimated MIC for Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus was in the order of 10 mg/mL, which seems more effective than toward Salmonella sp., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans which were in the order of 30 mg/mL. These preliminary results confirm that the part of the studied plant had a very good antimicrobial activity that was proportional to the serial concentrations of the tested extracts.


2017 ◽  
Vol 252 ◽  
pp. 18-23 ◽  
Author(s):  
Juliana Both Engel ◽  
Caroline Heckler ◽  
Eduardo Cesar Tondo ◽  
Daniel Joner Daroit ◽  
Patrícia da Silva Malheiros

1970 ◽  
Vol 18 ◽  
pp. 16-20
Author(s):  
BA Omogbai ◽  
FA Eze

Context: Plant based antimicrobial represent a vast untapped source for medicines and further exploration of plant antimicrobial neeto occur. Evolvulus alsinoides (L) (Convolvulaceae) is a perennial herb is used in traditional medicine in East Asia, India, Africa and Philippines to cure fever, cough, cold, venereal diseases, azoospermia, adenitis and dementia.   Objective: The objective of this research was to evaluate the antimicrobial activity of the extracts of E. alsinoides on some clinical microbial isolates.   Materials and Methods: The ed thanolic and aqueous extracts of the whole plant (leaves and twigs) were analysed for alkanoids, tannins, glycosides, steroids, flavonoids, saponins, volatile oil and resins. The determination of antibacterial activity was done using the agar well diffusion technique. Pure cultures of pathogenic bacteria such as Bacillus cereus, Staphylococcus aureus, Micrococcus leutus, Klebsiella Pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi were used for antibacterial activity assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).   Results: The ethanolic extract of the plant had MIC values ranging from 16 mg/ml to 512.5 mg/ml. The least MIC was 16mg-ml against Salmonella typhi while Bacillus cereus and Staphylococcus aureus showed the highest MIC of 512.5 mg-ml. In the aqueous extract the MIC ranged between 512.5 to >1025 mg/ml. Salmonella typhi, Micrococcus luteus and Staphylococcus aureus were not inhibited by the water extract. Phytochemical result showed ethanol to be a better solvent for the extraction of the bioactive agents in this plant which include: glycosides, alkaloids, saponins, tannins, flavonoids and volatile oil.   Conclusion: In this study the gram-negative organisms had the lowest MICs and MBCs. This suggests their higher susceptibility to the extract of this plant. On the basis of the result obtained in this investigation it can be concluded that ethanol extract of Evolvulus alsinoides had significant in vitro broad spectrum antimicrobial activity.   Keywords: Evolvulus alsinoides; Phytochemical screening; Antibacterial activity. DOI: http://dx.doi.org/10.3329/jbs.v18i0.8769 JBS 2010; 18(0): 16-20


Author(s):  
Hamza Mohamed Ahmed ◽  
Ashraf Mahmoud Ramadhani ◽  
Ibrahim Yaagoub Erwa ◽  
Omer Adam Omer Ishag ◽  
Mohamed Bosharh Saeed

cinnamon dating from 1000 AD when it was firstly recorded in English due to its important as aroma and as herbs. The aim of this study was to investigate phytochemicals constitutes, chemical composition and antimicrobial activity of the essential oil of commercial samples of Cinnamon verum bark. The essential oil was extracted by hydrodistillation, while the crude extracts were prepared by three different solvents methanol (70%), acetone and aqueous. Phytochemical screening of crude extracts was performed using standard methods. The essential oil was subjected to GC-MS analysis and tested against Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, Eschericchia coli and Candida albicans. The obtained results indicated the presence of alkaloids, flavonoids, coumarin, tannins, terpenoids, saponin, glycoside, anthrocyanin and phenolic compounds in the methanolic, aqoueous and acetone extracts of C. verum bark; while the major components of the extracted essential oil of C. verum bark were cinnamaldehyde (85.50%), stigmasterol (3.69%), Cadinene (1.37%), (E)-cinnamaldehyde (1.35%), alpha-amorphene (1.33%), hydrocinnamaldehyde (1.28%), alpha-cubebene (1.25) and ergosterol (1.09%) respectively. The antimicrobial activity result indicated the high activity of the extracted essential oil against all tested microorganisms at high concentration; except in S. typhimurium and C. albicans at concentrations of 25% and 12.5% no activity was noticed. Based in our obtained results the essential oil of C. verum bark had high potential as antimicrobial agent, therefore, recommended for more advanced studies to be conducted on this abundant plant as natural source of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document