scholarly journals Hypolaetin-7-O-β-D-xyloside from Juniperus communis Fruits Inhibits Melanogenesis on Zebrafish Pigmentation

2017 ◽  
Vol 12 (11) ◽  
pp. 1934578X1701201
Author(s):  
Eun Ju Jeong ◽  
Jonghwan Jegal ◽  
Ki Wung Chung ◽  
Sang Gyun Noh ◽  
Hae Young Chung ◽  
...  

Hypolaetin-7- O-β-D-xyloside (1) is a naturally occurring flavonoid from Juniperus communis fruits. This study aimed to investigate anti-melanogenic effect of hypolaetin-7- O-β-D-xyloside on zebrafish pigmentation. The phenotype-based image analysis suggested that 1 suppressed the zebrafish pigmentation in a concentration-dependent manner (1-400 μM) as a reversible competitive inhibitor against the enzyme tyrosinase. According to the molecular docking simulation, the compound 1 interacted with residues His-263 of tyrosinase via hydrogen bonding. The present study provided direct experimental evidence for skin-lightening effect of 1 in an in vivo zebrafish model. Therapeutic attempts with the 1 might be useful in the management of skin pigmentation-related diseases.

2021 ◽  
Vol 7 (10) ◽  
pp. 834
Author(s):  
Aleksandar Pavic ◽  
Tatjana Ilic-Tomic ◽  
Jasmina Glamočlija

Severe drawbacks associated with the topical use of depigmenting agents in treatments of skin hyperigmentations impose a great demand for novel, effective, and safe melanogenesis inhibitors. Edible and medicinal mushrooms, known for numerous health-promoting properties, represent a rich reservoir of anti-melanogenic compounds, with the potential to be applied in preventing excessive skin pigmentation. Herein, using zebrafish (Danio rerio) as a preclinical animal model, we have demonstrated that ethanol extract of Laetiporus sulphureus (LSE) and Agaricus silvaticus (ASE) are not toxic at high doses up to 400–500 µg/mL while effectively inhibit melanogenesis in a dose-dependent manner. At depigmenting doses, the explored extracts showed no adverse effects on zebrafish embryos melanocytes. Even more, they did not provoke inflammation or neutropenia when applied at the highest dose ensuring almost complete the cells depigmentation. Since LSE and ASE have demonstrated significantly higher the therapeutic potential than kojic acid and hydroquinone, two well-known depigmenting agents, overall results of this study strongly suggest that the explored mushrooms extracts could be used as efficient and safe topical agents in treatments of skin hyperpigmentation disorders.


Pharmacology ◽  
2018 ◽  
Vol 102 (1-2) ◽  
pp. 81-87 ◽  
Author(s):  
Hongshan Ge ◽  
Lanlan Chen ◽  
Ying Su ◽  
Chunyan Jin ◽  
Ren-Shan Ge

Background: Estradiol, produced by aromatase (CYP19A1), is very important for reproduction. Folpet, captan, and captafol belong to the phthalimide class of fungicides. They are used to protect the leaves of plants or fruits. They could be endocrine disruptors and may disrupt CYP19A1 activity. Methods: In the present study, we investigated the effects of folpet, captan, and captafol on estradiol production and human CYP19A1 activity in JEG-3 cells. Results: Folpet, captan, and captafol decreased estradiol production in JEG-3 cells in a concentration-dependent manner. Folpet, captan, and captafol inhibited human CYP19A1 with inhibitory concentration (IC50) values of 3.55, 10.68, and 1.14 μmol/L respectively. These chemicals competitively inhibited human CYP19A1. Molecular docking simulation analysis showed that they tended to bind to the steroid-binding pocket of the CYP19A1. However, the required concentrations may not be relevant to the negligible systemic exposures in humans to these chemicals. Conclusion: Folpet, captan, and captafol are potential inhibitors of human CYP19A1.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2648-2656 ◽  
Author(s):  
Juan A. Rosado ◽  
Else M. Y. Meijer ◽  
Karly Hamulyak ◽  
Irena Novakova ◽  
Johan W. M. Heemskerk ◽  
...  

Abstract Effects of the occupation of integrin αIIbβ3 by fibrinogen on Ca++signaling in fura-2–loaded human platelets were investigated. Adding fibrinogen to washed platelet suspensions inhibited increases in cytosolic [Ca++] concentrations ([Ca++]i) evoked by adenosine diphosphate (ADP) and thrombin in a concentration-dependent manner in the presence of external Ca++ but not in the absence of external Ca++ or in the presence of the nonselective cation channel blocker SKF96365, indicating selective inhibition of Ca++entry. Fibrinogen also inhibited store-mediated Ca++ entry (SMCE) activated after Ca++ store depletion using thapsigargin. The inhibitory effect of fibrinogen was reversed if fibrinogen binding to αIIbβ3 was blocked using RDGS or abciximab and was absent in platelets from patients homozygous for Glanzmann thrombasthenia. Fibrinogen was without effect on SMCE once activated. Activation of SMCE in platelets occurs through conformational coupling between the intracellular stores and the plasma membrane and requires remodeling of the actin cytoskeleton. Fibrinogen inhibited actin polymerization evoked by ADP or thapsigargin in control cells and in cells loaded with the Ca++ chelator dimethyl BAPTA. It also inhibited the translocation of the tyrosine kinase p60src to the cytoskeleton. These results indicate that the binding of fibrinogen to integrin αIIbβ3 inhibits the activation of SMCE in platelets by a mechanism that may involve modulation of the reorganization of the actin cytoskeleton and the cytoskeletal association of p60src. This action may be important in intrinsic negative feedback to prevent the further activation of platelets subjected to low-level stimuli in vivo.


2017 ◽  
Vol 43 (5) ◽  
pp. 2074-2087 ◽  
Author(s):  
Liling Yang ◽  
Xiangjun Zhou ◽  
Weijuan Huang ◽  
Qin Fang ◽  
Jianlan Hu ◽  
...  

Background/Aims: Forsythia suspensa Vahl. (Oleaceae) fruits are widely used in traditional Chinese medicine to treat pneumonia, typhoid, dysentery, ulcers and oedema. Antibacterial and anti-inflammatory activities have been reported for phillyrin (PHN), the main ingredient in Forsythia suspensa Vahl fruits, in vitro. However, the underlying mechanisms in vivo remain poorly defined. In this study, we discovered that PHN exerted potent anti-inflammatory effects in lethal LPS-induced neutrophil inflammation by suppressing the MyD88-dependent signalling pathway in zebrafish. Methods: LPS-yolk microinjection was used to induce a lethal LPS-infected zebrafish model. The effect of PHN on the survival of zebrafish challenged with lethal LPS was evaluated using survival analysis. The effect of PHN on neutrophil inflammation grading in vivo was assessed by tracking neutrophils with a transgenic line. The effects of PHN on neutrophil production and migration were analysed by SB+ cell counts during consecutive hours after modelling. Additionally, key cytokines and members of the MyD88 signalling pathway that are involved in inflammatory response were detected using quantitative RT-PCR. To assess gene expression changes during consecutive hours after modelling, the IL-1β, IL-6, TNF-α, MyD88, TRIF, ERK1/2, JNK, IκBa and NF-κB expression levels were measured. Results: PHN could protect zebrafish against a lethal LPS challenge in a dose-dependent manner, as indicated by decreased neutrophil infltration, reduced tissue necrosis and increased survival rates. Up-regulated IL-1β, IL-6 and TNF-α expression also showed the same tendencies of depression by PHN. Critically, PHN significantly inhibited the LPS-induced activation of MyD88, IκBa, and NF-κB but did not affect the expression of ERK1/2 MAPKs or JNK MAPKs in LPS-stimulated zebrafish. Additionally, PHN regulated the MyD88/IκBα/NF-κB signalling pathway by controlling IκBα, IL-1β, IL-6, and TNF-α expression. Conclusion: This study provides a rationale for the clinical application of PHN as an anti-inflammatory agent.


2001 ◽  
Vol 45 (2) ◽  
pp. 382-392 ◽  
Author(s):  
Zeruesenay Desta ◽  
Nadia V. Soukhova ◽  
David A. Flockhart

ABSTRACT Isoniazid (INH) remains the most safe and cost-effective drug for the treatment and prophylaxis of tuberculosis. The use of INH has increased over the past years, largely as a result of the coepidemic of human immunodeficiency virus infection. It is frequently given chronically to critically ill patients who are coprescribed multiple medications. The ability of INH to elevate the concentrations in plasma and/or toxicity of coadministered drugs, including those of narrow therapeutic range (e.g., phenytoin), has been documented in humans, but the mechanisms involved are not well understood. Using human liver microsomes (HLMs), we tested the inhibitory effect of INH on the activity of common drug-metabolizing human cytochrome P450 (CYP450) isoforms using isoform-specific substrate probe reactions. Incubation experiments were performed at a single concentration of each substrate probe at its Km value with a range of INH concentrations. CYP2C19 and CYP3A were inhibited potently by INH in a concentration-dependent manner. At 50 μM INH (∼6.86 μg/ml), the activities of these isoforms decreased by ∼40%. INH did not show significant inhibition (<10% at 50 μM) of other isoforms (CYP2C9, CYP1A2, and CYP2D6). To accurately estimate the inhibition constants (Ki values) for each isoform, four concentrations of INH were incubated across a range of five concentrations of specific substrate probes. The meanKi values (± standard deviation) for the inhibition of CYP2C19 by INH in HLMs and recombinant human CYP2C19 were 25.4 ± 6.2 and 13 ± 2.4 μM, respectively. INH showed potent noncompetitive inhibition of CYP3A (Ki = 51.8 ± 2.5 to 75.9 ± 7.8 μM, depending on the substrate used). INH was a weak noncompetitive inhibitor of CYP2E1 (Ki = 110 ± 33 μM) and a competitive inhibitor of CYP2D6 (Ki = 126 ± 23 μM), but the mean Ki values for the inhibition of CYP2C9 and CYP1A2 were above 500 μM. Inhibition of one or both CYP2C19 and CYP3A isoforms is the likely mechanism by which INH slows the elimination of coadministered drugs, including phenytoin, carbamazepine, diazepam, triazolam, and primidone. Slow acetylators of INH may be at greater risk for adverse drug interactions, as the degree of inhibition was concentration dependent. These data provide a rational basis for understanding drug interaction with INH and predict that other drugs metabolized by these two enzymes may also interact.


Author(s):  
Kartika Arum Wardani ◽  
Kholida Nur Aini ◽  
Heny Arwati ◽  
Willy Sandhika

Abstract Sequestration of Plasmodium berghei ANKA-infected erythrocytes occurs in BALB/c mice as characteristic of  Plasmodium falciparum infection in humans. Animals’ bile has been widely used for centuries in Traditional Chinese Medicine. Goat bile has been used in healing infectious and non-infectious diseases; however, no report on the use of goat bile against malaria infection and sequestration. The purpose of this study was to analyze the correlation between parasitemia and sequestration in the liver of P.berghei ANKA-infected BALB/c mice treated with goat bile. This research was an in vivo experimental study using the post-test control group design. The male BALB/c mice aged ± 6 weeks, body weight 20-25 g were used. The mice were divided into five groups where Group 1-3 were mice treated with goat bile 25%, 50%, and 100%, respectively. Group 4-5 were negative (sterile water) and positive controls (DHP). Parasitemia was observed daily from each mouse and the number of sequestered infected erythrocytes on the endothelium of sinusoids. The data were analyzed using t independent test. Antimalarial activity of goat bile was shown by the lower parasitemia in goat bile-treated mice compared with the negative control. The average number of sequestration was goat bile concentration-dependent manner. The higher the concentration, the lower the number of sequestration. Sequestration was correlated with parasitemia (p=0,0001). Sequestration of P.berghei ANKA-infected erythrocytes correlated with parasitemia, and was goat bile concentration-dependent manner. Keywords: Malaria, parasitemia, sequestration, goat bileCorrespondence: [email protected]


Author(s):  
Edrees Khan Rahmatzada ◽  
Prof. Paras Nath Yadav ◽  
Dr. Yuba Raj Pokharel

Thiosemicarbazone have the antiviral, antibacterial, antifungal, and anticancer effects. 3-OH-Me-TSC inhibited the cell viability of HepG-2 cells by CV assay in a concentration dependent manner (control, 1μM, 3μM, 10μM, 30μM, and 100μM) with IC50 value of 9.587622μM. Further colony formation assay demonstrated that 3-OH-Me-TSC inhibits colony number and size of HepG-2. Wound healing assay exhibited that 3-OH-Me-TSC inhibit the migration of HepG-2 cells. DAPI staining showed that 3-OH-Me-TSC inhibited proliferation of HepG-2 cells in 30μM and 100μM concentrations respectively. 3-OH-Me-TSC inhibited VEGF, p38 alpha, C-JUN, BECN-1, ERK, NF-KB, in HepG-2 cells. We found that 3-OH-Me-TSC inhibit proliferation of HepG-2 cells by inhibiting MAPK signaling pathway, 3-OH-Me-TSC can be developed as future chemotherapeutic agent for treatment of hepatocellular carcinoma after the evaluation of this compounds in more cancer cells an in vivo model.


Author(s):  
Mohammad Reza Shiran ◽  
Elham Mahmoudian ◽  
Abolghasem Ajami ◽  
Seyed Mostafa Hosseini ◽  
Ayjamal Khojasteh ◽  
...  

Abstract Objectives Angiogenesis is the most important challenge in breast cancer treatment. Recently, scientists become interesting in rare natural products and intensive researches was performed to identify their pharmacological profile. Auraptene shows helpful effects such as cancer chemo-preventive, anti-inflammatory, anti-oxidant, immuno-modulatory. In this regard, we investigated the anti-angiogenesis effect of Auraptene in in-vitro and in-vivo model of breast cancer. Methods In this study, 4T, MDA-MB-231 and HUVEC cell lines were used. The proliferation study was done by MTT assay. For tube formation assay, 250 matrigel, 1 × 104 HUVEC treated with Auraptene, 20 ng/mL EGF, 20 ng/mL bFGF and 20 ng/mL VEGF were used. Gene expression of important gene related to angiogenesis in animal model of breast cancer was investigated by Real-time PCR. Protein expression of VCAM-1 and TNFR-1 gene related to angiogenesis in animal model of breast cancer was investigated by western-blot. Results Auraptene treatment led to reduction in cell viability of MDA-MB-231 in a concentration-dependent manner. Also, we observed change in the number of tubes or branches formed by cells incubated with 40 and 80 μM Auraptene. Auraptene effect the gene expression of important gene related to angiogenesis (VEGF, VEGFR2, COX2, IFNɣ). Moreover, the western blot data exhibited that Auraptene effect the protein expression of VCAM-1 and TNFR-1. Conclusions Overall, this study shows that Auraptene significantly suppressed angiogenesis via down-regulation of VEGF, VEGFR2, VCAM-1, TNFR-1, COX-2 and up-regulation of IFNγ.


Sign in / Sign up

Export Citation Format

Share Document