scholarly journals Association between air pollution and type 2 diabetes: an updated review of the literature

2019 ◽  
Vol 10 ◽  
pp. 204201881989704 ◽  
Author(s):  
Yongze Li ◽  
Lu Xu ◽  
Zhongyan Shan ◽  
Weiping Teng ◽  
Cheng Han

Air pollution and type 2 diabetes mellitus (T2DM) are critical public health issues worldwide. A large number of epidemiological studies have highlighted the adverse effects of air pollution on diabetes, and include risk profiles for different exposure durations, study design types, subgroup populations, and effects of air pollution components. We researched PubMed, Google Scholar, and Web of Science to identify studies on the association between air pollution and T2DM from January 2009 to January 2019. The aim of this review is to provide a brief overview of epidemiological and experimental studies on air pollution associated with T2DM from the latest research, which may provide practical information about this relationship and possible mechanisms. Current cumulative evidence appears to suggest that T2DM-related biomarkers increase with increasing exposure duration and concentration of air pollutants. The chemical constituents of the air pollutant mixture may affect T2DM to varying degrees. The suggested mechanisms whereby air pollutants induce T2DM include increased inflammation, oxidative stress, and endoplasmic reticulum stress.

2008 ◽  
Vol 33 (6) ◽  
pp. 1269-1283 ◽  
Author(s):  
Rob M. van Dam

Numerous epidemiological studies have evaluated the association between coffee consumption and risk of type 2 diabetes, coronary heart disease, and various cancers. This paper briefly reviews the evidence for a relation between coffee consumption and these conditions, with particular attention to methodological issues. Several early studies suggested that coffee consumption could result in a marked increase in risk of coronary heart disease and several types of cancer. However, more recent prospective cohort studies that are less prone to selection and information bias have not confirmed these findings. High consumption of unfiltered types of coffee, such as French press and boiled coffee, has been shown to increase low-density-lipoprotein-cholesterol concentrations. In addition, limiting caffeinated coffee intake during pregnancy seems a prudent choice. However, evidence has been accumulating that frequent consumption of coffee may reduce risk of type 2 diabetes and liver cancer. Further experimental studies are warranted to elucidate the underlying mechanisms and possibly identify the components in coffee that are responsible for these putative effects. In sum, the currently available evidence on coffee and risk of cardiovascular diseases and cancer is largely reassuring, and suggests that, for the general population, addressing other health-related behaviors has priority for the prevention of chronic diseases.


Author(s):  
Maria-Viola Martikainen ◽  
Päivi Aakko-Saksa ◽  
Lenie van den Broek ◽  
Flemming R. Cassee ◽  
Roxana O. Carare ◽  
...  

The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer’s disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.


PLoS Medicine ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. e1003767
Author(s):  
Xiang Li ◽  
Mengying Wang ◽  
Yongze Song ◽  
Hao Ma ◽  
Tao Zhou ◽  
...  

Background Air pollution has been related to incidence of type 2 diabetes (T2D). We assessed the joint association of various air pollutants with the risk of T2D and examined potential modification by obesity status and genetic susceptibility on the relationship. Methods and findings A total of 449,006 participants from UK Biobank free of T2D at baseline were included. Of all the study population, 90.9% were white and 45.7% were male. The participants had a mean age of 56.6 (SD 8.1) years old and a mean body mass index (BMI) of 27.4 (SD 4.8) kg/m2. Ambient air pollutants, including particulate matter (PM) with diameters ≤2.5 μm (PM2.5), between 2.5 μm and 10 μm (PM2.5–10), nitrogen oxide (NO2), and nitric oxide (NO) were measured. An air pollution score was created to assess the joint exposure to the 4 air pollutants. During a median of 11 years follow-up, we documented 18,239 incident T2D cases. The air pollution score was significantly associated with a higher risk of T2D. Compared to the lowest quintile of air pollution score, the hazard ratio (HR) (95% confidence interval [CI]) for T2D was 1.05 (0.99 to 1.10, p = 0.11), 1.06 (1.00 to 1.11, p = 0.051), 1.09 (1.03 to 1.15, p = 0.002), and 1.12 (1.06 to 1.19, p < 0.001) for the second to fifth quintile, respectively, after adjustment for sociodemographic characteristics, lifestyle factors, genetic factors, and other covariates. In addition, we found a significant interaction between the air pollution score and obesity status on the risk of T2D (p-interaction < 0.001). The observed association was more pronounced among overweight and obese participants than in the normal-weight people. Genetic risk score (GRS) for T2D or obesity did not modify the relationship between air pollution and risk of T2D. Key study limitations include unavailable data on other potential T2D-related air pollutants and single-time measurement on air pollutants. Conclusions We found that various air pollutants PM2.5, PM2.5–10, NO2, and NO, individually or jointly, were associated with an increased risk of T2D in the population. The stratified analyses indicate that such associations were more strongly associated with T2D risk among those with higher adiposity.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fatemeh Jabbari ◽  
Anoushiravan Mohseni Bandpei ◽  
Maryam S. Daneshpour ◽  
Abbas Shahsavani ◽  
Seyed Saeed Hashemi Nazari ◽  
...  

Diabetes mellitus (DM) is considered one of the leading health issues that are egregiously threatening human life throughout the world. Several epidemiological studies have examined the relationship of a particular matter<10 μm (PM10) exposure and with type 2 diabetes mellitus (T2DM) prevalence and incidence. Accordingly, the current study is a study investigating the independent influence of air pollution (AP) and rs10830963 on the incidence of T2DM. A total number of 2428 adults over 20 years of age participated in a prospective cohort (TCGS) during a 9-year follow-up phase. The concentration of AP was measured, and the obtained values were considered the mean level in three previous years since the exposure concentration took the people living in that location. The COX regression model was employed to determine the influence of AP and rs10830963 on the incidence of T2DM in adjustment with covariate factors. Among the 392 T2DM, 230 cases (58.7%) were female diabetics, and 162 (41.3%) were male diabetics. According to the multivariable-adjusted model, exposure to PM10 (per 10 μm/m3), associated with the risk of T2DM, although just a borderline (p=0.07) was found in the multivariable model (HR; 1.50, 95% CI; 1-2.32). The rs10830963 was directly associated with the incidence of diabetes, and the GG genotype increased the T2DM rate by 113% (more than two times) (HR; 2.134, 95% CI; 1.42-3.21, p≤0.001) and GC increased it by 65% (HR; 1.65, 95% CI; 1.24-2.21, p≤0.001). Long-term exposure to PM10 was associated with an increased risk of diabetes. Thus, it is suggested that the individuals with variant rs10830963 genotypes fall within a group susceptible to an increased risk of T2DM arising from AP.


2018 ◽  
Vol 64 (5) ◽  
pp. 329-335
Author(s):  
Alla F. Kolpakova ◽  
Ruslan N. Sharipov ◽  
Oxana A. Volkova

The review presents the modern concept of the relationship between air pollution with fine particulate matter (PM) and the prevalence of diabetes mellitus (DM). The role of PM in the pathogenesis of DM, in particular, DM2, depending on their size, origin, chemical composition, and concentration in the air is discussed. For this purpose, we used materials from the articles indexed in the PubMed and RSCI databases. Road transport-related PM, containing intermediate valence metals are believed to be the most dangerous ones. Long-term exposure to high concentrations of fine and ultrafine PM is associated with the risk of type 2 diabetes and mortality. Short-term exposure to PM causes vascular insulin resistance and inflammation triggered by oxidative stress in the lungs. Oxidative stress caused by exposure to PM is the central stage of inflammatory reactions, leading to release of pro-inflammatory cytokines from cells and systemic inflammation. Exposure to PM sized 2.5 microns or less results in significant increase in expression of proinflammatory genes and activation of corresponding signaling pathways. Involvement of PM into impairment of glucose homeostasis and increase in inflammation in adipose tissue, liver, and central nervous system has been confirmed in models and experimental studies. The role of air pollution with PM in the pathogenesis of type 2 diabetes is still not fully understood, especially at the molecular and cellular level. The development of formalized descriptions of the processes mediating the effect of PM on the human body will provide better understanding of the role of air pollution with suspended particles in the pathogenesis of various diseases and, in particular, DM2, which can contribute to improvement of treatments and preventive measures.


2021 ◽  
Vol 30 (159) ◽  
pp. 200242
Author(s):  
Thomas Bourdrel ◽  
Isabella Annesi-Maesano ◽  
Barrak Alahmad ◽  
Cara N. Maesano ◽  
Marie-Abèle Bind

Studies have pointed out that air pollution may be a contributing factor to the coronavirus disease 2019 (COVID-19) pandemic. However, the specific links between air pollution and severe acute respiratory syndrome-coronavirus-2 infection remain unclear. Here we provide evidence from in vitro, animal and human studies from the existing literature. Epidemiological investigations have related various air pollutants to COVID-19 morbidity and mortality at the population level, however, those studies suffer from several limitations. Air pollution may be linked to an increase in COVID-19 severity and lethality through its impact on chronic diseases, such as cardiopulmonary diseases and diabetes. Experimental studies have shown that exposure to air pollution leads to a decreased immune response, thus facilitating viral penetration and replication. Viruses may persist in air through complex interactions with particles and gases depending on: 1) chemical composition; 2) electric charges of particles; and 3) meteorological conditions such as relative humidity, ultraviolet (UV) radiation and temperature. In addition, by reducing UV radiation, air pollutants may promote viral persistence in air and reduce vitamin D synthesis. Further epidemiological studies are needed to better estimate the impact of air pollution on COVID-19. In vitro and in vivo studies are also strongly needed, in particular to more precisely explore the particle–virus interaction in air.


Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Guozhang Xu ◽  
Donghuui Duan ◽  
Dingyun You ◽  
Jiaying Xu ◽  
Xiaoqi Feng ◽  
...  

Introduction: Epidemiological evidence on long-term exposure to ambient air pollution and type 2 diabetes (T2D) incidence are sparse, and the results are contradictory. Hypothesis: We performed a time-series analysis to investigate potential association between long-term exposure to ambient air pollution and T2D incidence in the Chinese population. Methods: Monthly time-series data between 2008-2015 on ambient air pollutants and incident T2D were obtained from the Environment Monitoring Center of Ningbo and the Chronic Disease Surveillance System of Ningbo. Relative risks (RRs) and 95% confidence intervals (95%CIs) of incident T2D per 10 μg/m 3 increase in ambient air pollutants were estimated from Poisson generalized additive models and adjusted for month, temperature, relative humidity, air pressure and wind speed. This model was combined with a distributed lag non-linear model to determine the relative risks. Main Outcome Measures: The main outcome measure was T2D incidence. Results: Long-term exposure to particulate matter <10 μm (PM10) and Sulphur dioxide (SO2) were associated with increased T2D incidence. The relative risks (RRs) of each increment in 10 μg/m 3 of PM10 and SO2 were 1.62 (95%CI, 1.16 to 2.28) and 1.63 (95%CI, 1.12 to 2.38) for overall participants, 1.56 (95%CI, 1.12 to 2.17) and 1.59 (95%CI, 1.14 to 2.23) for males, 1.68 (95%CI, 1.15 to 2.44) and 1.76 (95%CI, 1.21 to 2.56) for females, respectively. Whereas for ozone (O3) exposure, the RRs were 0.78 (95%CI, 0.68 to 0.90) for overall participants, 0.78 (95%CI, 0.69 to 0.90) for males, and 0.78 (95%CI, 0.67 to 0.91) for females, respectively. Female participants were more prone to develop T2D after long-term exposed to ambient air pollutants than male counterparts. No statistically significant associations were observed for PM2.5, NO2, and CO exposures, nor in the two- and three-pollutant models. Conclusions: Long-term exposure to PM10 and SO2 is positively associated with T2D incidence, whereas O3 is negatively associated with T2D incidence.


2018 ◽  
Vol 56 (9) ◽  
pp. 1413-1425 ◽  
Author(s):  
Emanuela Anastasi ◽  
Tiziana Filardi ◽  
Sara Tartaglione ◽  
Andrea Lenzi ◽  
Antonio Angeloni ◽  
...  

Abstract Type 2 diabetes (T2D) is a chronic disease with a growing prevalence and a leading cause of death in many countries. Several epidemiological studies observed an association between T2D and increased risk of many types of cancer, such as gynecologic neoplasms (endometrial, cervical, ovarian and vulvar cancer). Insulin resistance, chronic inflammation and high free ovarian steroid hormones are considered the possible mechanisms behind this complex relationship. A higher risk of endometrial cancer was observed in T2D, even though this association largely attenuated after adjusting for obesity. A clear relationship between the incidence of cervical cancer (CC) and T2D has still not be determined; however T2D might have an impact on prognosis in patients with CC. To date, studies on the association between T2D and ovarian cancer (OC) are limited. The effect of pre-existing diabetes on cancer-specific mortality has been evaluated in several studies, with less clear results. Other epidemiological and experimental studies focused on the potential role of diabetes medications, mainly metformin, in cancer development in women. The correct understanding of the link between T2D and gynecologic cancer risk and mortality is currently imperative to possibly modify screening and diagnostic-therapeutic protocols in the future.


2021 ◽  
Vol 22 (2) ◽  
pp. 660
Author(s):  
María Aguilar-Ballester ◽  
Gema Hurtado-Genovés ◽  
Alida Taberner-Cortés ◽  
Andrea Herrero-Cervera ◽  
Sergio Martínez-Hervás ◽  
...  

Cardiovascular disease (CVD) is the leading cause of death worldwide and is the clinical manifestation of the atherosclerosis. Elevated LDL-cholesterol levels are the first line of therapy but the increasing prevalence in type 2 diabetes mellitus (T2DM) has positioned the cardiometabolic risk as the most relevant parameter for treatment. Therefore, the control of this risk, characterized by dyslipidemia, hypertension, obesity, and insulin resistance, has become a major goal in many experimental and clinical studies in the context of CVD. In the present review, we summarized experimental studies and clinical trials of recent anti-diabetic and lipid-lowering therapies targeted to reduce CVD. Specifically, incretin-based therapies, sodium-glucose co-transporter 2 inhibitors, and proprotein convertase subtilisin kexin 9 inactivating therapies are described. Moreover, the novel molecular mechanisms explaining the CVD protection of the drugs reviewed here indicate major effects on vascular cells, inflammatory cells, and cardiomyocytes, beyond their expected anti-diabetic and lipid-lowering control. The revealed key mechanism is a prevention of acute cardiovascular events by restraining atherosclerosis at early stages, with decreased leukocyte adhesion, recruitment, and foam cell formation, and increased plaque stability and diminished necrotic core in advanced plaques. These emergent cardiometabolic therapies have a promising future to reduce CVD burden.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


Sign in / Sign up

Export Citation Format

Share Document