scholarly journals A review: Mechanism of action of antiviral drugs

2021 ◽  
Vol 35 ◽  
pp. 205873842110026
Author(s):  
Shamaila Kausar ◽  
Fahad Said Khan ◽  
Muhammad Ishaq Mujeeb Ur Rehman ◽  
Muhammad Akram ◽  
Muhammad Riaz ◽  
...  

Antiviral drugs are a class of medicines particularly used for the treatment of viral infections. Drugs that combat viral infections are called antiviral drugs. Viruses are among the major pathogenic agents that cause number of serious diseases in humans, animals and plants. Viruses cause many diseases in humans, from self resolving diseases to acute fatal diseases. Developing strategies for the antiviral drugs are focused on two different approaches: Targeting the viruses themselves or the host cell factors. Antiviral drugs that directly target the viruses include the inhibitors of virus attachment, inhibitors of virus entry, uncoating inhibitors, polymerase inhibitors, protease inhibitors, inhibitors of nucleoside and nucleotide reverse transcriptase and the inhibitors of integrase. The inhibitors of protease (ritonavir, atazanavir and darunavir), viral DNA polymerase (acyclovir, tenofovir, valganciclovir and valacyclovir) and of integrase (raltegravir) are listed among the Top 200 Drugs by sales during 2010s. Still no effective antiviral drugs are available for many viral infections. Though, there are a couple of drugs for herpesviruses, many for influenza and some new antiviral drugs for treating hepatitis C infection and HIV. Action mechanism of antiviral drugs consists of its transformation to triphosphate following the viral DNA synthesis inhibition. An analysis of the action mechanism of known antiviral drugs concluded that they can increase the cell’s resistance to a virus (interferons), suppress the virus adsorption in the cell or its diffusion into the cell and its deproteinisation process in the cell (amantadine) along with antimetabolites that causes the inhibition of nucleic acids synthesis. This review will address currently used antiviral drugs, mechanism of action and antiviral agents reported against COVID-19.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1645 ◽  
Author(s):  
Sangiliyandi Gurunathan ◽  
Muhammad Qasim ◽  
Youngsok Choi ◽  
Jeong Tae Do ◽  
Chankyu Park ◽  
...  

Infectious diseases account for more than 20% of global mortality and viruses are responsible for about one-third of these deaths. Highly infectious viral diseases such as severe acute respiratory (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease (COVID-19) are emerging more frequently and their worldwide spread poses a serious threat to human health and the global economy. The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of 27 July 2020, SARS-CoV-2 has infected over 16 million people and led to the death of more than 652,434 individuals as on 27 July 2020 while also causing significant economic losses. To date, there are no vaccines or specific antiviral drugs to prevent or treat COVID-19. Hence, it is necessary to accelerate the development of antiviral drugs and vaccines to help mitigate this pandemic. Non-Conventional antiviral agents must also be considered and exploited. In this regard, nanoparticles can be used as antiviral agents for the treatment of various viral infections. The use of nanoparticles provides an interesting opportunity for the development of novel antiviral therapies with a low probability of developing drug resistance compared to conventional chemical-based antiviral therapies. In this review, we first discuss viral mechanisms of entry into host cells and then we detail the major and important types of nanomaterials that could be used as antiviral agents. These nanomaterials include silver, gold, quantum dots, organic nanoparticles, liposomes, dendrimers and polymers. Further, we consider antiviral mechanisms, the effects of nanoparticles on coronaviruses and therapeutic approaches of nanoparticles. Finally, we provide our perspective on the future of nanoparticles in the fight against viral infections.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 942 ◽  
Author(s):  
Georgeta Serban

Viral infections have resulted in millions of victims in human history. Although great efforts have been made to find effective medication, there are still no drugs that truly cure viral infections. There are currently approximately 90 drugs approved for the treatment of human viral infections. As resistance toward available antiviral drugs has become a global threat to health, there is an intrinsic need to identify new scaffolds that are useful in discovering innovative, less toxic and highly active antiviral agents. 1,3,4-Thiadiazole derivatives have been extensively studied due to their pharmacological profile, physicochemical and pharmacokinetic properties. This review provides an overview of the various synthetic compounds containing the 2-amino-1,3,4-thiadiazole moiety that has been evaluated for antiviral activity against several viral strains and could be considered possible prototypes for the development of new antiviral drugs.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 445 ◽  
Author(s):  
Paolo Calligari ◽  
Sara Bobone ◽  
Giorgio Ricci ◽  
Alessio Bocedi

A new Coronavirus strain, named SARS-CoV-2, suddenly emerged in early December 2019. SARS-CoV-2 resulted in being dramatically infectious, with thousands of people infected. In this scenario, and without effective vaccines available, the importance of an immediate tool to support patients and against viral diffusion becomes evident. In this study, we exploit the molecular docking approach to analyze the affinity between different viral proteins and several inhibitors, originally developed for other viral infections. Our data show that, in some cases, a relevant binding can be detected. These findings support the hypothesis to develop new antiviral agents against COVID-19, on the basis of already established therapies.


2014 ◽  
Vol 3 (4) ◽  
pp. 59-64 ◽  
Author(s):  
Mike Lewis

In comparison to the range of antibiotics used in medicine, the spectrum of antifungal and antiviral drugs used in primary dental care is relatively limited. In practical terms, there are only three antifungal agents and two antiviral agents that have a role. This paper will describe the clinical presentation of orofacial candidal and viral infections and the use of antimicrobial drugs in their management.


2020 ◽  
Vol 1 (1) ◽  
pp. 81-91
Author(s):  
Jay Kant Raut

Emerging viral infections such as the zika virus, dengue virus, ebola virus, corona virus are afflicting millions of human populations worldwide. Therefore, the development of new treatments against emerging infectious diseases has become an urgent task. The availability of commercially viable, safe, and effective antiviral drugs still remains a big challenge. Mushrooms are considered as an untapped reservoir of several novel compounds of great value in industry and medicine. Although exploration, and exploitation of the therapeutic importance of fungal metabolites has started early with the discovery of penicillin, mushrooms’s pharmacological potential has much less been investigated. This article briefly reviews the antiviral potentials of mushrooms to combat deadly disease outbreaks caused by emerging and re-emerging viruses. Altogether 69 mushroom species with potent antiviral agents and mode of action against prominent viruses such as human immunodeficiency virus, influenza, herpes simplex virus, hepatitis B and C viruses, corona viruses etc. are listed in this study. Further studies are encouraged to discover more novel potent antiviral agents or evaluate already known compounds from those mushrooms with clinical trials.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1257
Author(s):  
Mengxun Zhang ◽  
Jiaqing Zhong ◽  
Yongai Xiong ◽  
Xun Song ◽  
Chenyang Li ◽  
...  

Developing broad-spectrum antiviral drugs remains an important issue as viral infections continue to threaten public health. Host-directed therapy is a method that focuses on potential targets in host cells or the body, instead of viral proteins. Its antiviral effects are achieved by disturbing the life cycles of pathogens or modulating immunity. In this review, we focus on the development of broad-spectrum antiviral drugs that enhance the immune response. Some natural products present antiviral effects mediated by enhancing immunity, and their structures and mechanisms are summarized here. Natural products with immunomodulatory effects are also discussed, although their antiviral effects remain unknown. Given the power of immunity and the feasibility of host-directed therapy, we argue that both of these categories of natural products provide clues that may be beneficial for the discovery of broad-spectrum antiviral drugs.


2020 ◽  
Vol 27 ◽  
Author(s):  
Sehrish Bano ◽  
Abdul Hameed ◽  
Mariya Al-Rashida ◽  
Shafia Iftikhar ◽  
Jamshed Iqbal

Background: The 2019 novel coronavirus (2019-nCoV), also known as coronavirus 2 (SARS-CoV-2) acute respiratory syndrome has recently emerged and continued to spread rapidly with high level of mortality and morbidity rates. Currently, no efficacious therapy is available to relieve coronavirus infections. As new drug design and development takes much time, there is a possibility to find an effective treatment from existing antiviral agents. Objective: In this case, there is a need to find out the relationship between possible drug targets and mechanism of action of antiviral drugs. This review discusses about the efforts to develop drug from known or new molecules. Methods: Viruses usually have two structural integrities, proteins and nucleic acids, both of which can be possible drug targets. Herein, we systemically discuss the structural-functional relationships of the spike, 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro) and RNA-dependent RNA polymerase (RdRp), as these are prominent structural features of corona virus. Certain antiviral drugs such as Remdesivir are RNA dependent RNA polymerase inhibitor. It has the ability to terminate RNA replication by inhibiting ATP. Results: It is reported that ATP is involved in synthesis of coronavirus non-structural proteins from 3CLpro and PLpro. Similarly, mechanisms of action of many other antiviral agents has been discussed in this review. It will provide new insights into the mechanism of inhibition, and let us develop new therapeutic antiviral approaches against novel SARS-CoV-2 coronavirus. Conclusion: In conclusion, this review summarizes recent progress in developing protease inhibitors for SARS-CoV-2.


Author(s):  
Mohamed Ibrahim Elzagheid

: Nucleosides and their analogues have been in use for many years and have become essential for treating patients with viral infections. Many additional nucleoside drugs have been approved over the past decades. This strongly demonstrates how important these compounds are and the crucial role they play. Given that a significant amount of research and literature has been documented regarding nucleoside analogues, this review article mainly focuses the discussion on nucleosides and nucleoside analogous that have proven to play significant role or be emerging in the treatment of known viral infections. This covers the names, structures, applications, toxicity, and mode of action of relevant nucleoside analogues.


1998 ◽  
Vol 11 (4) ◽  
pp. 614-627 ◽  
Author(s):  
A. K. Patick ◽  
K. E. Potts

SUMMARY Currently, there are a number of approved antiviral agents for use in the treatment of viral infections. However, many instances exist in which the use of a second antiviral agent would be beneficial because it would allow the option of either an alternative or a combination therapeutic approach. Accordingly, virus-encoded proteases have emerged as new targets for antiviral intervention. Molecular studies have indicated that viral proteases play a critical role in the life cycle of many viruses by effecting the cleavage of high-molecular-weight viral polyprotein precursors to yield functional products or by catalyzing the processing of the structural proteins necessary for assembly and morphogenesis of virus particles. This review summarizes some of the important general features of virus-encoded proteases and highlights new advances and/or specific challenges that are associated with the research and development of viral protease inhibitors. Specifically, the viral proteases encoded by the herpesvirus, retrovirus, hepatitis C virus, and human rhinovirus families are discussed.


Sign in / Sign up

Export Citation Format

Share Document