The Impact of Medications on Esophageal Motility

2021 ◽  
Vol 1 (3) ◽  
pp. 277-285
Author(s):  
Diana L. Snyder ◽  
Karthik Ravi

The purpose of this review is to highlight the impact of common medications on esophageal motility. Esophageal motility is mediated through a complex network of neural innervation. Opioids lead to excitatory esophageal motor abnormalities termed opioid-induced esophageal dysfunction or OIED. Prokinetics have mixed effects on esophageal motility. Nitrates and calcium channel blockers relax esophageal smooth muscle, but they are limited clinically due to side effects. Sildenafil also relaxes smooth muscle, but it is costly. Peppermint oil may reduce distal esophageal spasm. Anticholinergics, selective serotonin reuptake inhibitors, estrogen, and cannabis need further study to evaluate their effects on esophageal motility.

2020 ◽  
pp. 1-8
Author(s):  
Rohit S. Loomba ◽  
Jacqueline Rausa ◽  
Vincent Dorsey ◽  
Ronald A. Bronicki ◽  
Enrique G. Villarreal ◽  
...  

Abstract Introduction: Children with congenital heart disease and cardiomyopathy are a unique patient population. Different therapies continue to be introduced with large practice variability and questionable outcomes. The purpose of this study is to determine the impact of various medications on intensive care unit length of stay, total length of stay, billed charges, and mortality for admissions with congenital heart disease and cardiomyopathy. Materials and methods: We identified admissions of paediatric patients with cardiomyopathy using the Pediatric Health Information System database. The admissions were then separated into two groups: those with and without inpatient mortality. Univariate analyses were conducted between the groups and the significant variables were entered as independent variables into the regression analyses. Results: A total of 10,376 admissions were included these analyses. Of these, 904 (8.7%) experienced mortality. Comparing patients who experienced mortality with those who did not, there was increased rate of acute kidney injury with an odds ratio (OR) of 5.0 [95% confidence interval (CI) 4.3 to 5.8, p < 0.01], cardiac arrest with an OR 7.5 (95% CI 6.3 to 9.0, p < 0.01), and heart transplant with an OR 0.3 (95% CI 0.2 to 0.4, p < 0.01). The medical interventions with benefit for all endpoints after multivariate regression analyses in this cohort are methylprednisolone, captopril, enalapril, furosemide, and amlodipine. Conclusions: Diuretics, steroids, angiotensin-converting enzyme inhibitors, calcium channel blockers, and beta blockers all appear to offer beneficial effects in paediatric cardiomyopathy admission outcomes. Specific agents within each group have varying effects.


2021 ◽  
pp. 1-4
Author(s):  
Michaela Kranepuhl ◽  
Detlef May ◽  
Edna Hillmann ◽  
Lorenz Gygax

Abstract This research communication describes the relationship between the occurrence of lameness and body condition score (BCS) in a sample of 288 cows from a single farm that were repeatedly scored in the course of 9 months while controlling for confounding variables. The relationship between BCS and lameness was evaluated using generalised linear mixed-effects models. It was found that the proportion of lame cows was higher with decreasing but also with increasing BCS, increased with lactation number and decreased with time since the last claw trimming. This is likely to reflect the importance of sufficient body condition in the prevention of lameness but also raises the question of the impact of overcondition on lameness and the influence of claw trimming events on the assessment of lameness. A stronger focus on BCS might allow improved management of lameness that is still one of the major problems in housed cows.


1995 ◽  
Vol 269 (3) ◽  
pp. G378-G385 ◽  
Author(s):  
Z. Xiong ◽  
N. Sperelakis ◽  
A. Noffsinger ◽  
C. Fenoglio-Preiser

Voltage-gated Ca2+ currents were investigated in single smooth muscle cells freshly isolated from the circular layer of the human colon (ascending and descending portions) using the whole cell voltage-clamp technique. Tissue samples were obtained at the time of therapeutic surgery. In physiological salt solution (containing 2 mM Ca2+), an inward current was observed when the cell membrane was depolarized in the presence of tetrodotoxin. This current disappeared when Ca2+ was removed from the bath solution and was inhibited when Ca2+ channel blockers were applied, indicating that the inward current was a Ca2+ current (ICa). Changing the holding potential (HP) from -100 mV to more positive potentials (e.g., -60 and -40 mV) markedly decreased the amplitude of ICa. The voltage dependence of steady-state activation and inactivation was represented by Boltzmann distributions; there was a substantial amount of overlap (window current) between -60 and -10 mV. A fast-inactivating ICa component followed by a slow-inactivating ICa component was observed in some cells from both ascending and descending colons. The fast ICa component was observed only when cells were held at -80 or -100 mV, and had a more negative threshold potential (-70 to -60 mV). This component was sensitive to low concentrations of Ni2+ (30 microM) but was resistant to nifedipine (10-20 microM). In contrast, the slow (sustained) ICa component was observed at all HPs (-40 to -100 mV) and had a more positive threshold potential (about -40 mV). This component was insensitive to low concentration of Ni2+ but was sensitive to nifedipine and BAY K 8644.(ABSTRACT TRUNCATED AT 250 WORDS)


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Marcela Herrera ◽  
Matthew A Sparks ◽  
Beverky H Koller ◽  
Thomas M Coffman

Prostaglandin E2 (PGE2) is a major prostanoid produced by the kidney having the potential to influence renal blood flow, Na excretion, and thus mean arterial pressure (BP). PGE2 actions are mediated by four distinct E-prostanoid (EP) receptor isoforms: EP1-EP4. The EP4 receptor (EP4R) triggers macula densa stimulation of renin, induces vasodilation, and may inhibit epithelial sodium transport. Thus, the impact of EP4Rs on BP may differ with the sites of PGE2 synthesis and pattern of EP4R activation within the kidney. To examine the role of EP4R on BP regulation we generated EP4R-deficient mice. Because deletion of EP4R in utero causes peri-natal mortality due to persistent patent ductus arteriosus, we carried out conditional deletion by crossing EP4flox/flox with a transgenic line with tamoxifen-inducible Cre expression in all tissues. Resting mean arterial pressure (MAP) measured by radiotelemetry was increased by 5±1mm Hg (p<0.05) in mice with total-body EP4R-deficiency (EP4R-TBKO) vs. controls. In addition, EP4R-TBKOs had an exaggerated increase in MAP with high-salt (6% NaCl) feeding (MAP increase: 5±1 vs. 2±1mmHg for controls; p<0.05) and during angiotensin II (Ang II)-dependent hypertension (MAP increase: 37±2 vs. 24±3mmHg for controls; p<0.05). We next hypothesized that exaggerated hypertension in the EP4R-TBKOs was due to elimination of compensatory EP4R-depedent vasodilation mediated by direct actions in vascular smooth muscle cells (VSMCs). Accordingly, we generated mice lacking EP4R in VSMCs (EP4R-SMKOs) using EP4flox/flox and transgenic mice with tamoxifen-inducible expression of Cre limited to smooth muscle cells. In contrast to the EP4R-TBKOs, elimination of EP4R only from VSMC reduced resting MAP by 5±1mm Hg (p<0.04) but did not affect the BP response to high salt feeding (MAP change: 2±1 vs. 2±1 mm Hg; ns) or chronic Ang II infusion (MAP increase: 29±3 vs. 34±4 mm Hg; ns). Thus, the EP4R modulates resting MAP but its specific impact may vary between EP4R populations in different cell lineages. EP4Rs resist the development of salt- and Ang II-dependent hypertension. These anti-hypertensive actions are not mediated by direct effects of EP4R in VSMCs, but may involve EP4R in endothelium, brain, or kidney epithelia.


2021 ◽  
Vol 1 (3) ◽  
pp. 254-262
Author(s):  
Mario Costantini ◽  
Renato Salvador ◽  
Andrea Costantini

Spastic esophageal motility disorders are represented, as per the Chicago classification 4.0, by diffuse esophageal spasm and hypercontractile esophagus. They are very rare and therefore poorly understood. The diagnosis is usually made by manometry in presence of dysphagia or chest pain, but often it is often an unexpected finding. In this paper, the authors review the current knowledge and possible treatments of these disorders, when needed. They underline that invasive treatments, as surgical myotomy or POEM, are rarely necessary and that the indications for them are based on low quality studies. Therefore, they should be used with extreme caution in treating spastic motility disorders other than achalasia.


Endocrinology ◽  
2019 ◽  
Vol 160 (9) ◽  
pp. 2101-2114 ◽  
Author(s):  
Qing Lu ◽  
Ana P Davel ◽  
Adam P McGraw ◽  
Sitara P Rao ◽  
Brenna G Newfell ◽  
...  

Abstract Angiotensin II (AngII) and the mineralocorticoid receptor (MR) ligand aldosterone both contribute to cardiovascular disorders, including hypertension and adverse vascular remodeling. We previously demonstrated that AngII activates MR-mediated gene transcription in human vascular smooth muscle cells (SMCs), yet the mechanism and the impact on SMC function are unknown. Using an MR-responsive element-driven transcriptional reporter assay, we confirm that AngII induces MR transcriptional activity in vascular SMCs and endothelial cells, but not in Cos1 or human embryonic kidney-293 cells. AngII activation of MR was blocked by the MR antagonist spironolactone or eplerenone and the protein kinase C-δ (PKCδ) inhibitor rottlerin, implicating both in the mechanism. Similarly, small interfering RNA knockdown of PKCδ in SMCs prevented AngII-mediated MR activation, whereas knocking down of MR blocked both aldosterone- and AngII-induced MR function. Coimmunoprecipitation studies reveal that endogenous MR and PKCδ form a complex in SMCs that is enhanced by AngII treatment in association with increased serine phosphorylation of the MR N terminus. AngII increased mRNA expression of the SMC-MR target gene, FKBP51, via an MR-responsive element in intron 5 of the FKBP51 gene. The impact of AngII on FKBP51 reporter activity and gene expression in SMCs was inhibited by spironolactone and rottlerin. Finally, the AngII-induced increase in SMC number was also blocked by the MR antagonist spironolactone and the PKCδ inhibitor rottlerin. These data demonstrate that AngII activates MR transcriptional regulatory activity, target gene regulation, and SMC proliferation in a PKCδ-dependent manner. This new mechanism may contribute to synergy between MR and AngII in driving SMC dysfunction and to the cardiovascular benefits of MR and AngII receptor blockade in humans.


2010 ◽  
Vol 298 (5) ◽  
pp. G706-G713 ◽  
Author(s):  
Peter R. Strege ◽  
Lei Sha ◽  
Arthur Beyder ◽  
Cheryl E. Bernard ◽  
Edward Perez-Reyes ◽  
...  

Antispasmodics are used clinically to treat a variety of gastrointestinal disorders by inhibition of smooth muscle contraction. The main pathway for smooth muscle Ca2+entry is through L-type channels; however, there is increasing evidence that T-type Ca2+channels also play a role in regulating contractility. Otilonium bromide, an antispasmodic, has previously been shown to inhibit L-type Ca2+channels and colonic contractile activity. The objective of this study was to determine whether otilonium bromide also inhibits T-type Ca2+channels. Whole cell currents were recorded by patch-clamp technique from HEK293 cells transfected with cDNAs encoding the T-type Ca2+channels, CaV3.1 (α1G), CaV3.2 (α1H), or CaV3.3 (α1I) alpha subunits. Extracellular solution was exchanged with otilonium bromide (10−8to 10−5M). Otilonium bromide reversibly blocked all T-type Ca2+channels with a significantly greater affinity for CaV3.3 than CaV3.1 or CaV3.2. Additionally, the drug slowed inactivation in CaV3.1 and CaV3.3. Inhibition of T-type Ca2+channels may contribute to inhibition of contractility by otilonium bromide. This may represent a new mechanism of action for antispasmodics and may contribute to the observed increased clinical effectiveness of antispasmodics compared with selective L-type Ca2+channel blockers.


1999 ◽  
Vol 277 (6) ◽  
pp. C1284-C1290 ◽  
Author(s):  
Hamid I. Akbarali ◽  
Hemant Thatte ◽  
Xue Dao He ◽  
Wayne R. Giles ◽  
Raj K. Goyal

An inwardly rectifying K+ conductance closely resembling the human ether-a-go-go-related gene (HERG) current was identified in single smooth muscle cells of opossum esophageal circular muscle. When cells were voltage clamped at 0 mV, in isotonic K+ solution (140 mM), step hyperpolarizations to −120 mV in 10-mV increments resulted in large inward currents that activated rapidly and then declined slowly (inactivated) during the test pulse in a time- and voltage- dependent fashion. The HERG K+ channel blockers E-4031 (1 μM), cisapride (1 μM), and La3+ (100 μM) strongly inhibited these currents as did millimolar concentrations of Ba2+. Immunoflourescence staining with anti-HERG antibody in single cells resulted in punctate staining at the sarcolemma. At membrane potentials near the resting membrane potential (−50 to −70 mV), this K+ conductance did not inactivate completely. In conventional microelectrode recordings, both E-4031 and cisapride depolarized tissue strips by 10 mV and also induced phasic contractions. In combination, these results provide direct experimental evidence for expression of HERG-like K+ currents in gastrointestinal smooth muscle cells and suggest that HERG plays an important role in modulating the resting membrane potential.


Open Medicine ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 304-323 ◽  
Author(s):  
Hernando Vargas-Uricoechea ◽  
Manuel Felipe Cáceres-Acosta

AbstractHigh blood pressure in patients with diabetes mellitus results in a significant increase in the risk of cardiovascular events and mortality. The current evidence regarding the impact of intervention on blood pressure levels (in accordance with a specific threshold) is not particularly robust. Blood pressure control is more difficult to achieve in patients with diabetes than in non-diabetic patients, and requires using combination therapy in most patients. Different management guidelines recommend initiating pharmacological therapy with values >140/90 mm/Hg; however, an optimal cut point for this population has not been established. Based on the available evidence, it appears that blood pressure targets will probably have to be lower than <140/90mmHg, and that values approaching 130/80mmHg should be recommended. Initial treatment of hypertension in diabetes should include drug classes demonstrated to reduce cardiovascular events; i.e., angiotensin converting-enzyme inhibitors, angiotensin receptor blockers, diuretics, or dihydropyridine calcium channel blockers. The start of therapy must be individualized in accordance with the patient's baseline characteristics, and factors such as associated comorbidities, race, and age, inter alia.


Sign in / Sign up

Export Citation Format

Share Document