Mineralogical and chemical characterization of some vermiculites from the Mozambique Belt of Tanzania for agricultural use

Clay Minerals ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 1-17 ◽  
Author(s):  
E. M. M. Marwa ◽  
S. Hillier ◽  
C. M. Rice ◽  
A. A. Meharg

AbstractVermiculite minerals are locally available in the Mozambique Belt of Tanzania but are not currently commercially exploited. In part this may be due to lack of any precise characterization. This study was carried out as a first step to assess the suitability of these vermiculites for crop production by characterization of their mineralogical and chemical compositions. X-ray diffraction and scanning electron microscopy combined with an energy-dispersive X-ray system were used to establish the mineralogy. Electron microprobe analysis and inductively coupled plasma-mass spectrometry were used to study the chemical compositions and to identify any possible issues related to chemical composition that might affect their use if applied as soil conditioners. The samples were characterized as vermiculites and hydrobiotites with a wide variety of accessory minerals. Accessory minerals that might be of some concern are galena, fibrous amphiboles and sepiolite. The total levels of Ni in all vermiculites, and Cr in some, were also found to be high relative to common European standards and this might limit their potential as soil conditioners. It is clear that a field assessment of the bioavailability of various elements would be necessary before decisions relating to potential agricultural use could be made.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2160
Author(s):  
Alexander Bogdanov ◽  
Ekaterina Kaneva ◽  
Roman Shendrik

Elpidite belongs to a special group of microporous zirconosilicates, which are of great interest due to their capability to uptake various molecules and ions, e.g., some radioactive species, in their structural voids. The results of a combined electron probe microanalysis and single-crystal X-ray diffraction study of the crystals of elpidite from Burpala (Russia) and Khan-Bogdo (Mongolia) deposits are reported. Some differences in the chemical compositions are observed and substitution at several structural positions within the structure of the compounds are noted. Based on the obtained results, a detailed crystal–chemical characterization of the elpidites under study was carried out. Three different structure models of elpidite were simulated: Na2ZrSi6O15·3H2O (related to the structure of Russian elpidite), partly Ca-replaced Na1.5Ca0.25ZrSi6O15·2.75H2O (close to elpidite from Mongolia), and a hypothetical CaZrSi6O15·2H2O. The vibration spectra of the models were obtained and compared with the experimental one, taken from the literature. The strong influence of water molecule vibrations on the shape of IR spectra of studied structural models of elpidite is discussed in the paper.


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2597-2611 ◽  
Author(s):  
Mario Bandiera ◽  
Patrice Lehuédé ◽  
Marco Verità ◽  
Luis Alves ◽  
Isabelle Biron ◽  
...  

This work aims to characterise the chemical composition of Roman opaque red glass sectilia dated to the 2nd century A.D and to shed light on Roman glassmaking production of different shades of red, from red to reddish-brown. Due to the lack of technical historical sources for this period many questions about technological aspects still remain. In this project a multi-disciplinary approach is in progress to investigate the red glass sectilia with several red hues from the Imperial Villa of Lucius Verus (161–169 A.D.) in Rome. First, colorimetric measurements were taken to identify the various red hues. The second step was chemical characterization of the samples and the identification of crystalline colouring phases. Particle Induced X-Ray Emission (PIXE) analysis was used to investigate the chemical composition of these glass samples, while the crystalline phases were identified by Raman Spectroscopy and Scanning Electrons Microscope with Energy Dispersive X-ray Spectrometry (SEM-EDS). Using SEM-EDS nanoparticles were detected as a colouring agent, the chemical composition and the morphology of which has been studied in depth. This information has been compared with the colorimetric analysis to establish any correlation with the different colour hues.


2014 ◽  
Vol 805 ◽  
pp. 343-349
Author(s):  
Carine F. Machado ◽  
Weber G. Moravia

This work evaluated the influence of additions of the ceramic shell residue (CSR), from the industries of Lost Wax Casting, in the modulus of elasticity and porosity of concrete. The CSR was ground and underwent a physical, chemical, and microstructural characterization. It was also analyzed, the environmental risk of the residue. In the physical characterization of the residue were analyzed, the surface area, and particle size distribution. In chemical characterization, the material powder was subjected to testing of X-ray fluorescence (XRF). Microstructural characterization was performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The residue was utilized like addition by substitution of cement in concrete in the percentages of 10% and 15% by weight of Portland cement. It was evaluated properties of concrete in the fresh and hardened state, such as compressive strength, modulus of elasticity, absorption of water by total immersion and by capillarity. The results showed that the residue can be used in cement matrix and improve some properties of concrete. Thus, the CSR may contribute to improved sustainability and benefit the construction industry.


2012 ◽  
Vol 186 ◽  
pp. 212-215
Author(s):  
Jacek Krawczyk ◽  
Włodzimierz Bogdanowicz ◽  
Grzegorz Dercz ◽  
Wojciech Gurdziel

Microstructure of terminal area of Al65Cu32.9Co2.1ingots (numbers indicate at.%), obtained via directional solidification was studied. Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray powder diffraction were applied. Point microanalysis by Scanning Electron Microscope was used for examination of chemical compositions of alloy phases. It was found that tetragonal θ phase of Al2Cu stoichiometric formula was the dominate phase (matrix). Additionally the alloy contained orthogonal set of nanofibres of Al7Cu2Co T phase with the average diameter of 50-500 nm and oval areas of hexagonal Al3(Cu,Co)2H-phase, surrounded by monoclinic AlCu η1phase rim. Inside some areas of H-phase cores of decagonal quasicrystalline D phase were observed.


Author(s):  
Carolyn Dillian

This article discusses the current status of archaeological obsidian studies, including techniques used in characterization and sourcing studies, obsidian hydration, and regional syntheses. It begins with an overview of obsidian and the unique formation processes that create it before turning to a discussion of the significance of characterization and sourcing techniques for understanding prehistoric obsidian trade and exchange. It then considers the problematic aspects of the term “sourcing,” despite its ubiquitous use in archaeology and archaeometry, along with the use of X-ray fluorescence in the chemical characterization of obsidian. It also explores obsidian hydration dating methods and equations, factors that can affect the date assignments for hydration specimens, and the various uses of obsidian in prehistoric times. Finally, it addresses some important questions relating to obsidian research and suggests new directions in the field.


Author(s):  
Elisabeth Holmqvist

Handheld portable energy-dispersive X-ray fluorescence (pXRF) spectrometry is used for non-destructive chemical characterization of archaeological ceramics. Portable XRF can provide adequate analytical sensitivity to discriminate geochemically distinct ceramic pastes, and to identify compositional clusters that correlate with data patterns acquired by NAA or other high sensitivity techniques. However, successful non-destructive analysis of unprepared inhomogeneous ceramic samples requires matrix-defined scientific protocols to control matrix effects which reduce the sensitivity and precision of the instrumentation. Quantification of the measured fluorescence intensities into absolute concentration values and detection of light elements is encumbered by the lack of matrix matched calibration and proper vacuum facilities. Nevertheless, semi-quantitative values for a limited range of high Z elements can be generated. Unstandardized results are difficult to validate by others, and decreased analytical resolution of non-destructive surface analysis may disadvantage site-specific sourcing, jeopardize correct group assignments, and lead to under-interpretation of ceramic craft and production systems.


2019 ◽  
Vol 11 (7) ◽  
pp. 1995 ◽  
Author(s):  
Sabrina Cajamarca ◽  
Douglas Martins ◽  
Juscimar da Silva ◽  
Mariana Fontenelle ◽  
Ítalo Guedes ◽  
...  

Several agro-industrial, livestock, and food wastes can be recycled to create biofertilizers. This diversity of raw materials can result in nutritional imbalance and an increase in heavy metal content, which could make the final product unfeasible. Thus, the chemical characterization of the raw materials and their influence on the sustainable and safe production of biofertilizers need to be better understood. In this context, the objective of the present study was to evaluate the chemical characteristics of agro-industrial residues used in the manufacture of an aerobic liquid biofertilizer. We analyzed the macronutrient, micronutrient, and trace metal contents of seven waste products used as raw materials to create a biofertilizer. In addition, a survey of secondary biofertilizer data from different residues was carried out that showed great heterogeneity in the chemical compositions of these residues, which has a direct impact on the agronomic efficiency of these biofertilizers. The characterization revealed that some materials may be contaminants of the soil, due to high levels of trace metals, especially cadmium. We conclude that the generation of detailed inventories, such as those of the nutrient and heavy metal contents of the raw materials and biofertilizers produced, is indispensable for the correct recommendation of biologically-based inputs in agriculture.


Sign in / Sign up

Export Citation Format

Share Document