scholarly journals miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2

Blood ◽  
2009 ◽  
Vol 113 (8) ◽  
pp. 1794-1804 ◽  
Author(s):  
Luke Pase ◽  
Judith E. Layton ◽  
Wigard P. Kloosterman ◽  
Duncan Carradice ◽  
Peter M. Waterhouse ◽  
...  

Abstract We demonstrate that in zebrafish, the microRNA miR-451 plays a crucial role in promoting erythroid maturation, in part via its target transcript gata2. Zebrafish miR-144 and miR-451 are processed from a single precursor transcript selectively expressed in erythrocytes. In contrast to other hematopoietic mutants, the zebrafish mutant meunier (mnr) showed intact erythroid specification but diminished miR-144/451 expression. Although erythropoiesis initiated normally in mnr, erythrocyte maturation was morphologically retarded. Morpholino knockdown of miR-451 increased erythrocyte immaturity in wild-type embryos, and miR-451 RNA duplexes partially rescued erythroid maturation in mnr, demonstrating a requirement and role for miR-451 in erythrocyte maturation. mnr provided a selectively miR-144/451-deficient background, facilitating studies to discern miRNA function and validate candidate targets. Among computer-predicted miR-451 targets potentially mediating these biologic effects, the pro-stem cell transcription factor gata2 was an attractive candidate. In vivo reporter assays validated the predicted miR-451/gata2-3′UTR interaction, gata2 down-regulation was delayed in miR-451-knockdown and mnr embryos, and gata2 knockdown partially restored erythroid maturation in mnr, collectively confirming gata2 down-regulation as pivotal for miR-451-driven erythroid maturation. These studies define a new genetic pathway promoting erythroid maturation (mnr/miR-451/gata2) and provide a rare example of partial rescue of a mutant phenotype solely by miRNA overexpression.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2773-2773
Author(s):  
Alexander C. Minella ◽  
Oscar Ramirez ◽  
Yanfei Xu ◽  
Tushar Murthy ◽  
Xiaodong Yang ◽  
...  

Abstract Whole genome sequencing has recently revealed the prevalence of mutations in proteins directing splicing of RNA in up to half of the patients with Myelodysplastic Syndrome (MDS). Mutations in the protein SF3B1 are particularly common in MDS patients with the phenotypic abnormality termed ring sideroblasts (dysplastic erythroid precursors with perinculear rings formed by iron-laden mitochondria). The most common SF3B1 mutation in MDS patients results in a change from lysine to glutamic acid at amino acid position 700 (K700E). Given that splicing of RNA is a ubiquitous phenomenon, it is unclear how these mutations result in clonal proliferation and dysplastic hematopoiesis; two hallmark features of MDS. Furthermore, direct experimental evidence demonstrating a causative role for SF3B1 mutations in MDS-related phenotypes is lacking. To better understand how mutations of spliceosomal proteins contribute to MDS pathogenesis, we sought to define how expression of mutant SF3B1 changes erythroid maturation in vitro and in vivo. Native SF3B1 cDNA constructs are not amenable to bacterial propagation due to toxicity of its HEAT-domain repeats. We overcame this problem by codon optimization (changing the DNA sequence while preserving the native peptide sequence). Human cord blood derived CD34+ cells were transduced with retroviral vectors to express either the wild-type or K700E mutant of SF3B1. After a week of expansion in cytokines (IL-3, SCF and IL6), cells were induced to erythroid differentiation by addition of erythropoietin (EPO) and analyzed for surface markers of erythroid differentiation (CD 71, CD117, CD105, CD45 and CD235A) at regular intervals. K700E mutant expressing cells were found to have significantly reduced expression of CD105 when compared to wild-type SF3B1-expressing cells (average 50% recuction, n =8). CD105 or endoglin is a TGF-beta receptor accessory receptor expressed at high levels during intermediate stages of erythroid maturation. A more modest reduction of CD71 expression was also noted in K700E-SF3B1 cells. MDS bone marrow is known to express low levels of both CD105 and CD71 making our results clinically relevant. To further characterize how mutant SF3B1 may cause dysplastic hematopoiesis, we studied transduced and transplanted murine progenitor cells in vivo and in colony forming assays. Murine data demonstrate significantly reduced K700E-transduced hematopoietic progenitors (as defined by flow-cytometry) in vivo and impaired erythroid colony formation in vitro. Together, our results suggest that enforced expression of K700E-SF3B1 induces aberrant erythroid maturation and impairs homeostasis of hematopoietic precursor cells. Thus, we provide direct evidence that MDS-associated SF3B1 mutations perturb normal hematopoiesis and offer rationale for using our complementary experimental approach as a platform for elucidating the molecular mechanisms through which mutations in RNA splicing factors promote hematologic disease. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 24 (8) ◽  
pp. 1626-1636 ◽  
Author(s):  
Florence Ying Lee ◽  
Thomas Quad de Aguiar Vallim ◽  
Hansook Kim Chong ◽  
Yanqiao Zhang ◽  
Yaping Liu ◽  
...  

Abstract The nuclear receptor, farnesoid X receptor (FXR, NR1H4), is known to regulate cholesterol, bile acid, lipoprotein, and glucose metabolism. In the current study, we provide evidence to support a role for FXR in hepatoprotection from acetaminophen (APAP)-induced toxicity. Pharmacological activation of FXR induces the expression of several genes involved in phase II and phase III xenobiotic metabolism in wild-type, but not Fxr−/− mice. We used chromatin immunoprecipitation-based genome-wide response element analyses coupled with luciferase reporter assays to identify functional FXR response elements within promoters, introns, or intragenic regions of these genes. Consistent with the observed transcriptional changes, FXR gene dosage is positively correlated with the degree of protection from APAP-induced hepatotoxicity in vivo. Further, we demonstrate that pretreatment of wild-type mice with an FXR-specific agonist provides significant protection from APAP-induced hepatotoxicity. Based on these findings, we propose that FXR plays a role in hepatic xenobiotic metabolism and, when activated, provides hepatoprotection against toxins such as APAP.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3104-3104 ◽  
Author(s):  
Antonio Sacco ◽  
Cinzia Federico ◽  
Katia Todoerti ◽  
Bachisio Ziccheddu ◽  
Arianna Giacomini ◽  
...  

INTRODUCTION. The multiple myeloma (MM) mutational landscape has identified KRAS as the most recurring somatic variant, observed in around 26% of cases, therefore KRAS may represent an important therapeutic target. Despite several attempts to develop a targeted therapeutic for KRAS mutant cancers, either direct KRAS enzymatic inhibition, or inhibition of MAPK- and PI3K- downstream effector cascades have not been successful. Therefore, there is a need to develop novel therapeutic approaches that may target the KRAS mutational event in MM. We have studied AZD4785, a novel, potent and selective high affinity 2'-4' constrained ethyl residues containing therapeutic antisense oligonucleotide (ASO) targeting KRAS, both in vitro and in vivo. METHODS. AZD4785 productive uptake was assessed by measuring KRAS knockdown at both the mRNA and protein level. Molecular mechanisms underlying AZD4785-dependent anti-MM activity were studied, interrogating the transcriptome profiling of AZD4785-treated MM cells. Anti-MM activity of AZD4785 was assessed in vitro in the context of primary MM patients' derived bone marrow stromal cells (BMSCs). Endpoints included evaluation of cell proliferation, cytotoxicity, cell cycle modulation, apoptosis, MM cell migration and adhesion; modulation of MAPK-, PI3K-, apoptotic-signaling. KRAS-mutated (MM1S; KMS20); -wild type (U266; KMS11) MM cell lines; BM MM patients' and peripheral blood healthy donor derived cells were tested. A non-targeting ASO (ASO-ctrl) was used as control. Synergism between AZD4785 and bortezomib, in modulating MM growth was tested. AZD4785-dependent modulation of tumor growth was studied in vivo in a subcutaneous MM.1S.-Luc model and a disseminated GFP/Luc-MM.1S model (BLI); MM cell dissemination to distant BM niches was studied ex vivo, using confocal laser scanning microscopy. RESULTS. AZD4785 led to specific dose-dependent inhibition of KRAS mRNA and protein expression, in KRAS-mutant, -wild-type cell lines and MM patient-derived CD138+ cells; without affecting NRAS and HRAS content. Wide mRNA transcriptome was performed using AZD4785 treated MM.1S cells vs control: GSEA showed down-regulation of MAPK, cell cycle, TP53 signaling pathways (FDR<0.25; P<0.05) in AZD4785-treated MM cells. Functionally, AZD4785 significantly impaired proliferation and survival of KRAS-mutant MM cells in a dose- and time-dependent manner even in the presence of patients' derived BM-MSCs. Cell growth of KRAS-wild type MM cells was not significantly affected. AZD4785 did not target healthy donors' derived PBMCs. Consistently with the effect on cell growth, AZD4785-treated KRAS mutant MM cells showed S-phase down-regulation, increased of G0/G1 phase and increased apoptotic rate, supported by up-regulation of cleaved-caspase-3, -PARP and BIM. The efficacy of AZD4785 in targeting MM cells within the context of the BM milieu was tested, revealing AZD4785-dependent impairment of MM cell adhesion and migration towards primary BM-MSCs, supported by inhibition of paxillin, cofilin, Src. Protein studies showed inhibition of both MAPK (phospho(p)-ERK1/2, p-MEK, p-RSK90, p-CRAF), and PI3K-Akt signaling pathways, selectively in AZD4785-treated KRAS mutant cells. AZD4785-dependent anti-MM activity was potentiated by the combinatory use of bortezomib, resulting in a significantly higher inhibition of MM cell proliferation, induction of apoptosis, and cell cycle arrest. AZD4785 exerted in vivo down-regulation of KRAS and anti-tumour activity in MM models, being more efficacious when used in combination with bortezomib, in terms of both inhibition of tumor growth and MM cell BM niches colonization, as evaluated by using in vivo whole body-bioluminescence imaging and ex vivo confocal laser scanning microscopy, respectively. CONCLUSION. Taken together, these data suggest that AZD4785 may represent a novel therapeutic approach for targeting mutant KRAS in MM, either alone or in combination with proteasome inhibitors; and warrant further development. Disclosures Giacomini: Fondazione Cariplo: Research Funding. Belotti:Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Revenko:Ionis Pharmaceuticals: Employment. MacLeod:Ionis Pharmaceuticals: Employment. Willis:AstraZeneca: Employment. Cai:AstraZeneca: Employment. Hauser:AstraZeneca: Employment. Rooney:AstraZeneca: Employment. Ambrose:AstraZeneca: Employment. Staniszewska:AstraZeneca: Employment. Hanson:AstraZeneca: Employment. Rossi:Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Mundipharma: Honoraria; BMS: Honoraria; Sandoz: Honoraria; Daiichi-Sankyo: Consultancy; Roche: Membership on an entity's Board of Directors or advisory committees. Ronca:Associazione Italiana per la Ricerca sul Canctro (AIRC): Research Funding. Bolli:GILEAD: Other: Travel expenses; JANSSEN: Honoraria; CELGENE: Honoraria. Moschetta:AstraZeneca: Employment. Ross:AstraZeneca: Employment. Roccaro:Celgene: Membership on an entity's Board of Directors or advisory committees; European Hematology Association: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Transcan2-ERANET: Research Funding; AstraZeneca: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding.


2018 ◽  
Vol 16 (1) ◽  
pp. 49-55 ◽  
Author(s):  
J. Stenzel ◽  
C. Rühlmann ◽  
T. Lindner ◽  
S. Polei ◽  
S. Teipel ◽  
...  

Background: Positron-emission-tomography (PET) using 18F labeled florbetaben allows noninvasive in vivo-assessment of amyloid-beta (Aβ), a pathological hallmark of Alzheimer’s disease (AD). In preclinical research, [<sup>18</sup>F]-florbetaben-PET has already been used to test the amyloid-lowering potential of new drugs, both in humans and in transgenic models of cerebral amyloidosis. The aim of this study was to characterize the spatial pattern of cerebral uptake of [<sup>18</sup>F]-florbetaben in the APPswe/ PS1dE9 mouse model of AD in comparison to histologically determined number and size of cerebral Aβ plaques. Methods: Both, APPswe/PS1dE9 and wild type mice at an age of 12 months were investigated by smallanimal PET/CT after intravenous injection of [<sup>18</sup>F]-florbetaben. High-resolution magnetic resonance imaging data were used for quantification of the PET data by volume of interest analysis. The standardized uptake values (SUVs) of [<sup>18</sup>F]-florbetaben in vivo as well as post mortem cerebral Aβ plaque load in cortex, hippocampus and cerebellum were analyzed. Results: Visual inspection and SUVs revealed an increased cerebral uptake of [<sup>18</sup>F]-florbetaben in APPswe/ PS1dE9 mice compared with wild type mice especially in the cortex, the hippocampus and the cerebellum. However, SUV ratios (SUVRs) relative to cerebellum revealed only significant differences in the hippocampus between the APPswe/PS1dE9 and wild type mice but not in cortex; this differential effect may reflect the lower plaque area in the cortex than in the hippocampus as found in the histological analysis. Conclusion: The findings suggest that histopathological characteristics of Aβ plaque size and spatial distribution can be depicted in vivo using [<sup>18</sup>F]-florbetaben in the APPswe/PS1dE9 mouse model.


2020 ◽  
Vol 18 ◽  
Author(s):  
J. Singh ◽  
L. Ronsard ◽  
M. Pandey ◽  
R. Kapoor ◽  
V.G. Ramachandran ◽  
...  

Background: HIV-1 Nef is an important accessory protein with multiple effector functions. Genetic studies of HIV-1 Nef gene shows extensive genetic diversity and the functional studies have been carried out mostly with Nef derived from regions dominated by subtype B (North America & Europe). Objective: This study was carried out to characterize genetic variations of the Nef gene from HIV-1 infected individuals from North-India and to find out their functional implications. Methods: The unique representative variants were sub-cloned in eukaryotic expression vector and further characterized with respect to their ability to down regulate cell surface expression of CD4 and MHC-1molecules. Results: The phylogenetic analysis of Nef variants revealed sequence similarity with either consensus subtype B or B/C recombinants. Boot scan analysis of some of our variants showed homology to B/C recombinant and some to wild type Nef B. Extensive variations were observed in most of the variants. The dN/dS ratio revealed 80% purifying selection and 20% diversifying selection implying the importance of mutations in Nef variants. Intracellular stability of Nef variants differed greatly when compared with wild type Nef B and C. There were some variants that possessed mutations in the functional domains of Nef and responsible for its differential CD4 and MHC-1 down regulation activity. Conclusion: We observed enhanced biological activities in some of the variants, perhaps arising out of amino acid substitutions in their functional domains. The CD4 and MHC-1 down-regulation activity of Nef is likely to confer immense survival advantage allowing the most rare genotype in a population to become the most abundant after a single selection event.


2013 ◽  
Vol 13 (5) ◽  
pp. 777-790 ◽  
Author(s):  
Yasrib Qurishi ◽  
Abid Hamid ◽  
Parduman R. Sharma ◽  
Zahoor A. Wani ◽  
Dilip M. Mondhe ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
You Shuai ◽  
Zhonghua Ma ◽  
Weitao Liu ◽  
Tao Yu ◽  
Changsheng Yan ◽  
...  

Abstract Background Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. Methods LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. Results It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. Conclusions Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Elizabeth Mathyer ◽  
Erin A. Brettmann ◽  
Alina D. Schmidt ◽  
Zane A. Goodwin ◽  
Inez Y. Oh ◽  
...  

AbstractThe genetic modules that contribute to human evolution are poorly understood. Here we investigate positive selection in the Epidermal Differentiation Complex locus for skin barrier adaptation in diverse HapMap human populations (CEU, JPT/CHB, and YRI). Using Composite of Multiple Signals and iSAFE, we identify selective sweeps for LCE1A-SMCP and involucrin (IVL) haplotypes associated with human migration out-of-Africa, reaching near fixation in European populations. CEU-IVL is associated with increased IVL expression and a known epidermis-specific enhancer. CRISPR/Cas9 deletion of the orthologous mouse enhancer in vivo reveals a functional requirement for the enhancer to regulate Ivl expression in cis. Reporter assays confirm increased regulatory and additive enhancer effects of CEU-specific polymorphisms identified at predicted IRF1 and NFIC binding sites in the IVL enhancer (rs4845327) and its promoter (rs1854779). Together, our results identify a selective sweep for a cis regulatory module for CEU-IVL, highlighting human skin barrier evolution for increased IVL expression out-of-Africa.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to &lt;1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


Sign in / Sign up

Export Citation Format

Share Document