The BAFF Inhibitor AMG523 Blocks Adhesion and Survival of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment: Clinical Implication.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3452-3452 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Jiangchun Xu ◽  
Xian-Feng Li ◽  
Iris Breitkreutz ◽  
Klaus Podar ◽  
...  

Abstract We previously identified a role of B-cell activating factor (BAFF), a member of the tumor necrosis factor superfamily, in localization and survival of MM cells in the BM microenvironment (Cancer Res2006, 66:6675–82). In the present study, we examined the potential therapeutic utility of the BAFF inhibitor, AMG523, for treating human MM using MM lines, either sensitive or resistant to conventional chemotherapy, as well as freshly isolated patient MM cells, in the presence or absence of bone marrow stromal cells (BMSCs). AMG523 induces modest cytotoxicity in MM cell lines and patient MM cells, suggesting a minor role of autocrine mechanism of BAFF for MM growth and survival. In the presence of BMSCs, AMG523 significantly decreased growth and survival in dexamethasone (Dex)-sensitive MM1S, Dex-resistant MM1R, INA6 MM cells and in patient MM cells (n=7), in a dose-dependent manner (0.1–10 μg/ml). BAFF-augmented MM adhesion to BMSCs is also blocked by AMG523 at 0.1 mg/ml in MM lines (MM1S, 28PE, INA6), as well as in freshly isolated patient MM cells (n=4). BAFF protects MM cells against dex- and lenalidomide-induced cytotoxicity; conversely, AMG523 blocks BAFF-induced protection against drug-induced apoptosis. Importantly, pretreatment of AMG523 blocks BAFF-induced activation of AKT, nuclear factor kB, and ERK in MM cells, confirming its inhibitory effect on BAFF-mediated adhesion and survival. We next asked whether AMG523 enhances Dex-, bortezomib-, Lenalidomide-induced MM cell cytotoxicity. AMG523 augments the inhibitory effect of Dex and lenalidomide in patient MM cells in the presence of BMSCs. Since osteoclasts (OCLs) secrete BAFF in the bone marrow microenvironment, we further asked whether AMG523 inhibits protection by MM-OCL interaction. OCLs were derived from peripheral blood mononuclear cells from MM patients after 2-week culture with M-CSF and RANKL, and MM cells were added in the presence or absence of AMG523. OCLs significantly increased MM cell survival, evidenced by annexin V and PI staining followed by flow cytometric analysis; conversely, AMG523 blocked MM cell survival by coculture with OCLs. Taken together, our data demonstrate that the novel therapeutic AMG523 blocks the interaction between BAFF and its receptors in human MM, thereby providing the rationale for clinical trials of AMG523 to improve patient outcome in MM.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 627-627
Author(s):  
Yu-Tzu Tai ◽  
Xian-Feng Li ◽  
Rory Coffey ◽  
Iris Breitkreutz ◽  
Laurence Catley Laurence Catley ◽  
...  

Abstract Recent studies have underscored the role of B-cell activating factor (BAFF), a member of the tumor necrosis factor superfamily, in promoting the survival of malignant B cells, including human MM. Since the tumor bone marrow microenvironment plays a crucial role in MM cell growth and survival, we here characterize the functional significance of BAFF in the interaction between MM and bone marrow stromal cells (BMSCs), and further defined molecular mechanisms regulating these processes. We first confirmed the expression of BAFF and its receptors (BCMA, TACI, BAFF-R) on majority of MM cell lines and CD138-purified patient MM cells. Significantly, gene expression profiling revealed increased BCMA expression on newly diagnosed and relapsed MM versus normal plasma cells (p<0.0001, student T test, Abstract # 552872). Although BAFF and its 3 receptors are expressed on CD138+patient MM cells (n=10) by RT-PCR analysis, the pattern of expression of TACI and BAFF-R receptors was heterogeneous, assessed by flow cytometric analysis. We next examined BAFF expression in BMSC lines (n=4) and BMSCs derived from patient BM (n=5). Baff expression is easily detected in BMSCs, and Baff levels are approximately 3–10-fold higher in supernatants of BMSCs than equivalent numbers of MM cells. Thus BMSCs are the main source of BAFF in MM patients. We then asked whether MM adhesion to BMSCs further upregulates BAFF secretion from BMSCs. Adhesion of 5 MM cell lines to BMSCs augments BAFF secretion by 2–5 fold, using BAFF ELISA. Immunoblotting using anti-BAFF Ab confirmed markedly higher expression of BAFF in BMSCs than MCCAR MM cells, as well as greater BAFF upregulation induced by MM adhesion. Since NF-kappaB (NF-κB) is crucial for MM adhesion-induced cytokine secretion from BMSCs and the BAFF gene promoter contains at least six NF-κB-binding sites, we next transfected KM104 BMSC line with a luciferase reporter vector carrying the BAFF gene promoter (BAFF-LUC) and then allowed MM cells to adhere to BMSCs for 24 hr, followed by measurement of luciferase activity. NF-κB-LUC reporter was used as positive and pGL3 plasmid as a negative control. Adhesion of MCCAR and MM1S MM lines to KM103 BMSC line with BAFF-LUC and NF-κB-LUC, but not control reporters, significantly enhanced luciferase activity, suggesting that NF-κB activation induced by MM adhesion to BMSCs mediates BAFF upregulation. In parallel, we also asked whether BAFF induces MM adhesion to BMSCs. BAFF (0–100 ng/ml) increases adhesion of 5 MM lines to BMSCs in a dose-dependent manner; conversely, TACI-Ig or blocking anti-BCMA Ab inhibited BAFF stimulation, indicating increased adhesion specific triggered by BAFF. Using adenoviruses expressing dominant-negative and constitutively expressed AKT as well as IkappaB kinase (IKK) inhibitor (PS-1145), we further showed that BAFF-induced MM cell adhesion is primarily mediated via activation of AKT and NF-κB signaling. Finally, BAFF significantly increased adhesion of CD138-expressing patient MM cells to BMSCs. These studies suggest a role for BAFF in localization and growth of MM cells in the BM microenvironment and strongly support novel important therapeutics targeting the interaction between BAFF and its receptors in human MM.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3476-3476
Author(s):  
Lanie Francis ◽  
Judy Anderson ◽  
Michael Timm ◽  
Noriyoshi Kurihara ◽  
Ujjal Singha ◽  
...  

Abstract The bone marrow microenvironment in MM is characterized by the presence of upregulated osteoclast activity (OCL) and increased angiogenesis. We have recently demonstrated that the HSP90 inhibitor 17-AAG (provided by the NCI) and the mTOR inhibitor rapamycin (LC Laboratories, MA) have synergistic inhibitory activity on MM cells. The objective of this study was to determine the effect of rapamycin, 17-AAG and the combination on OCL formation and angiogenesis. Rapamycin (0.01–100nM), 17-AAG (10–1000nM) and the combination was tested using an in vitro human OCL formation assay and a human angiogenesis assay (AngioKit, TCS Cellworks, UK). Nonadherent human marrow mononuclear cells (1 x 105/100 μL) were plated in 96-well plates in the presence or absence of DMSO, rapamycin, 17-AAG or the combination. RANKL (100ng/ml) and MCSF (20ng/ml) were added to all wells except control media and MCSF. After 3 weeks, cells were fixed, and the number of OCL-like multinucleated cells were scored. To test the effect of the agents on early OCL precursors, we added the inhibitory agents on days 1, 7 or 14 of the culture. The AngioKit is comprised of human endothelial cells in a 24 well plate. The endothelial cells proliferate and then migrate through the matrix to form tubular structures and anastomosing tubules by 2 weeks. Two control wells were treated with VEGF (+ve control) and two with suramin (−ve control). The optimized medium and test samples were replaced on days 4, 7, and 9 after initial treatment. On day 11, cultures were fixed and stained with antibodies to CD31 to detect vessel formation. The degree of tubule formation was quantitated using computerized image analysis (Angiosys, TCS Cellworks, UK). Single agent rapamycin (20–100nM) inhibited OCL formation by 35% as compared to control in all tested doses indicating that PI3K/mTOR is an important regulator of OCL formation. The effect was similar on day 7 and day 14 indicating that this pathway is important for early and late OCL formation. 17-AAG 100–600nM significantly inhibited OCL formation with 100nM 17-AAG inducing 12% OCL formation as compared to control, while 300 and 600nM completely abrogated OCLs (0% OCLs). This effect was similar at day 7. However, when 17-AAG was added on day 14, it only induced 50–60% reduction in OCL formation indicating that 17-AAG affects early OCL formation. The combination of the two agents completely inhibited OCL formation on day 1 and 7 and led to a 65% reduction in OCLs when added on day 14 of the culture. Rapamycin showed a marked decrease in angiogenesis (similar to the negative control suramin), even at the lowest level tested of 0.01nM. 17-AAG demonstrated some inhibition of angiogenesis at 10 nM, and completely abrogated angiogenesis at 500–1000nM. In summary, rapamycin and 17-AAG inhibit OCL formation and angiogenesis. The effect of 17-AAG was on early OCL formation while rapamycin was on both early and late OCL. These results are contradictory to previous data indicating that 17-AAG increases OCL activity in MM. Rapamycin had a significant inhibitory effect on angiogenesis even at low doses. These results demonstrate that the use of rapamycin analogues and 17-AAG in clinical trials may have a therapeutic effect, not only on MM cells, but also on the bone marrow microenvironment. Supported in part by an ASH Scholar Award and an MMRF grant.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2756-2756
Author(s):  
Sophia R Balderman ◽  
Benjamin J Frisch ◽  
Mark W LaMere ◽  
Alexandra N Goodman ◽  
Michael W. Becker ◽  
...  

Abstract Myelodysplastic Syndromes (MDS) are a group of clonal disorders characterized by ineffective hematopoiesis. Recently, data have emerged supporting a role of the bone marrow microenvironment (BMME ) in the initiation of MDS. We and others have previously shown that cells within the BMME play a central role in normal regulation of hematopoietic stem and progenitor cells (HSPCs). To determine if the HSPC compartment in MDS is defective and also if HSPC function in MDS is regulated by the BMME, we studied a transgenic murine model that expresses the Nup98/HOXD13 (NHD13) translocation product. As was previously reported, these mice develop ineffective hematopoiesis resulting in progressive cytopenias with dysmorphic cells, a phenotype similar to that of human MDS. We investigated the composition of the HSPC pool in these transgenic (TG) mice at 20 to 22 weeks from birth, a time when an MDS phenotype was evident but acute leukemia had not yet developed. Immunophenotypic analysis by flow cytometry on marrow cells from TG and wild type (WT) age-matched littermates demonstrated a severe defect in the TG HSPC pool, with a severe decline in Lin-Sca1+cKit+CD48-CD150+ long-term HSCs (WT vs. TG: 3.5 ± 1.2 x 104 vs 4.4 ± 3.4 x102, p =0.0025) and in Lin-Sca1+cKit+Flt3+Thy1.1- multipotent progenitors (WT vs. TG: 5.6 ± 1 x 105 vs 2.1 ± 0.4 x 104, p<0.0001), as well as in total Lin-Sca1+cKit+ cells and short-term HSCs. To determine if the numerical changes in phenotypic HSPCs corresponded with decreased HSPC function, we performed a competitive repopulation assay using whole bone marrow, and found relative loss of function of HSPCs by 9 weeks after transplantation of marrow from 22-week old TG vs littermate WT donor mice into lethally irradiated WT recipients as measured by percent of donor cells in the blood (WT vs. TG: 37.7 ± 3.4 vs 14.7 ± 1.7, p<0.0001). Serial blood cell flow cytometric analysis demonstrated myeloid skewing (marked by percent of CD11b positive cells) of HSPCs transplanted from TG mice at the expense of lymphocytes by 5 weeks (WT vs. TG: 44.0 ± 4.3 vs 64.9 ± 4.5, p=0.0047), which persisted at 9 weeks (WT vs. TG: 43.6 ± 3.6 vs 69.1 ± 5.9, p=0.0023) and 13 weeks post transplant, a feature which has been previously associated with HSPC aging. Curiously, despite robust engraftment of normal competitor marrow, serial blood counts of recipients after competitive transplant showed that mice receiving 22-week old TG marrow developed leukopenia (9 weeks, WT vs. TG: 7.3 ± 0.47 vs 4.6 ± 0.41, p=0.0008) and lymphopenia (9 weeks, WT vs. TG: 6.0 ± 0.42 vs 3.4 ± 0.37, p=0.0003), suggesting a bystander effect initiated by the TG marrow resulting in ineffective hematopoiesis in the recipients. To determine if the MDS microenvironment contributes to ineffective hematopoiesis, we transplanted NHD13 TG and normal competitor marrow into lethally irradiated TG or WT recipient mice. NHD13 TG marrow engrafted significantly better in WT compared to TG recipients as seen by 4 weeks post transplant (Percent of total cells, WT vs. TG recipient: 14.2 ± 2.3 vs 1.1 ± 0.1, p = 0.0049; Percent of CD11b positive cells, WT vs. TG recipient: 17.1 ± 4.2 vs 1.7 ± 0.1, p = 0.0208; Percent of B220 positive cells, WT vs. TG recipient: 2.7 ± 0.3 vs 0.1 ± 0.0, p = 0.0008). These aggregate results indicate (1) severe disruption of the immunophenotypic HSPC pool in this murine TG model of MDS, (2) a functional defect of HSPCs in this MDS model as evidenced by decreased engraftment and myeloid skewing, (3) contribution of the MDS BMME to ineffective hematopoiesis downstream of immature MDS cells and (4) MDS-dependent signals initiating such microenvironmental effects. Our data strongly suggest that the malignant clone in MDS initiates signals that disrupt the normal marrow microenvironment. Furthermore, these data provide support for a strategy where rejuvenation of the marrow microenvironment and/or interference with MDS-initiated signals may result in mitigation of ineffective hematopoiesis. Further understanding of the HSPC defect in this murine model of MDS and of the role of the BMME in MDS could therefore inform new therapeutic targets for this disease. Disclosures: No relevant conflicts of interest to declare.


1987 ◽  
Vol 252 (5) ◽  
pp. E643-E647 ◽  
Author(s):  
H. Matsuoka ◽  
M. Ishii ◽  
Y. Hirata ◽  
K. Atarashi ◽  
T. Sugimoto ◽  
...  

To investigate the role of guanosine 3',5'-cyclic monophosphate (cGMP) in the inhibitory effect on aldosterone production of alpha-human atrial natriuretic polypeptide (alpha-hANP) we first compared the effects of the peptide with those of sodium nitroprusside (SNP) on the production of aldosterone and cGMP in dispersed adrenal capsular cells of rats, second, examined the effects of derivatives of cGMP on the production of aldosterone, and, third, studied the influence of potassium on the effects of alpha-hANP on the production of aldosterone and cGMP. alpha-hANP at concentrations of 3 X 10(-8) to 3 X 10(-7) M decreased the production of aldosterone in a dose-dependent manner, while markedly increasing the production of cGMP. On the other hand, although SNP at concentrations of 10(-5) to 10(-3) M increased the production of cGMP in a dose-dependent manner, it caused no significant changes in the production of aldosterone. Neither dibutyryl cGMP nor 8-bromo-cGMP affected the production of aldosterone in the adrenal cells. Although the aldosterone-inhibitory effect of alpha-hANP was lost in the potassium-free medium, the cGMP-stimulatory effect of the peptide was not altered by adding potassium to the incubation medium at concentrations of 0-5 meq/l. These results suggest that cGMP plays a minor role in the inhibitory effect of alpha-hANP on the production of aldosterone and that the production of cGMP stimulated by the peptide is not directly involved in the decrease in aldosterone production in adrenal capsular cells of rats.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yiyi Yao ◽  
Fenglin Li ◽  
Jiansong Huang ◽  
Jie Jin ◽  
Huafeng Wang

AbstractDespite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is necessary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.


2021 ◽  
Vol 38 (2) ◽  
Author(s):  
Wenqian Zheng ◽  
Jinhui Hu ◽  
Yiming Lv ◽  
Bingjun Bai ◽  
Lina Shan ◽  
...  

AbstractThe use of the anthelmintic drug pyrvinium pamoate (PP) in cancer therapy has been extensively investigated in the last decade. PP has been shown to have an inhibitory effect in colorectal cancer (CRC), but the underlying mechanism remains elusive. We aimed to investigate the antitumor activity and mechanisms of PP in CRC. In the present study, we used CCK-8 assays, colony formation assays, and western blotting to reveal that PP effectively suppressed CRC cell proliferation and the AKT-dependent signaling pathway in a concentration-dependent and time-dependent manner. Flow cytometric analysis and fluorescence microscopy demonstrated that PP increased intracellular reactive oxygen species (ROS) accumulation. We found that the inhibitory effect of PP on cell proliferation and AKT protein expression induced by PP could be partially reversed by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, the results also demonstrated that PP inhibited cell migration by modulating epithelial-to-mesenchymal transition (EMT)-related proteins, including E-cadherin and vimentin. In conclusion, our data suggested that PP effectively inhibited cell proliferation through the ROS-mediated AKT-dependent signaling pathway in CRC, further providing evidence for the use of PP as an antitumor agent.


2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 164
Author(s):  
Federica Costa ◽  
Valentina Marchica ◽  
Paola Storti ◽  
Fabio Malavasi ◽  
Nicola Giuliani

The emerging role of the PD-1/PD-L1 axis in MM immune-microenvironment has been highlighted by several studies. However, discordant data have been reported on PD-1/PD-L1 distribution within the bone marrow (BM) microenvironment of patients with monoclonal gammopathies. In addition, the efficacy of PD-1/PD-L1 blockade as a therapeutic strategy to reverse myeloma immune suppression and inhibit myeloma cell survival still remains unknown. Recent data suggest that, among the potential mechanisms behind the lack of responsiveness or resistance to anti-PD-L1/PD-1 antibodies, the CD38 metabolic pathways involving the immune-suppressive factor, adenosine, could play an important role. This review summarizes the available data on PD-1/PD-L1 expression in patients with MM, reporting the main mechanisms of regulation of PD-1/PD-L1 axis. The possible link between the CD38 and PD-1/PD-L1 pathways is also reported, highlighting the rationale for the potential use of a combined therapeutic approach with CD38 blocking agents and anti-PD-1/PD-L1 antibodies in order to improve their anti-tumoral effect in MM patients.


Blood ◽  
2006 ◽  
Vol 107 (2) ◽  
pp. 835-840 ◽  
Author(s):  
Daniel E. Cramer ◽  
Daniel J. Allendorf ◽  
Jarek T. Baran ◽  
Richard Hansen ◽  
Jose Marroquin ◽  
...  

AbstractMyelotoxic injury in the bone marrow (BM) as a consequence of total body irradiation (TBI) or granulocyte colony-stimulating factor (G-CSF) mobilization results in the deposition of iC3b on BM stroma (stroma-iC3b). In the present study, we have examined how stroma-iC3b interacts with hematopoietic progenitor cells (HPCs) and the role of complement (C) and complement receptor 3 (CR3) in BM injury/repair. We demonstrate here that stroma-iC3b tethers HPCs via the inserted (I) domain of HPC complement receptor 3 (CR3, CD11b/CD18, Mac-1). Following irradiation, stroma-iC3b was observed in the presence of purified IgM and normal mouse serum (NMS), but not serum from Rag-2-/- mice, implicating a role for antibody (Ab) and the classic pathway of C activation. Furthermore, a novel role for soluble yeast β-glucan, a ligand for the CR3 lectin-like domain (LLD), in the priming of CR3+ HPC is suggested. Soluble yeast β-glucan could enhance the proliferation of tethered HPCs, promote leukocyte recovery following sublethal irradiation, and increase the survival of lethally irradiated animals following allogeneic HPC transplantation in a CR3-dependent manner. Taken together, these observations suggest a novel role for C, CR3, and β-glucan in the restoration of hematopoiesis following injury. (Blood. 2006;107:835-840)


2007 ◽  
Vol 42 (2) ◽  
pp. 106
Author(s):  
Hyeon-Min Cho ◽  
Jong-Wook Hong ◽  
Jun-Gi Kim ◽  
Jeong-A Kim

Sign in / Sign up

Export Citation Format

Share Document