The HSP90 Inhibitor 17-DMAG Targets NF-κB to Induce Apoptosis in CLL and Prolongs Survival in a CLL Mouse Model.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 732-732
Author(s):  
Erin K Hertlein ◽  
Thomas S Lin ◽  
Wagner J Amy ◽  
Towns H William ◽  
Virginia M Goettl ◽  
...  

Abstract Abstract 732 One attractive therapeutic target currently being explored in CLL is HSP90, a chaperone which stabilizes various client proteins (AKT, Raf, ZAP-70) which are important for survival of CLL cells. Interfering with HSP90 protein binding to these client proteins leads to their rapid degradation. Our group and others have demonstrated that 17-allylamino-17-demethoxy-geldanamycin (17-AAG) depletes only select chaperone proteins and promotes modest cytotoxicity in CLL patient cells. 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG) is a novel HSP90 inhibitor with improved solubility, bioavailability and cytotoxicity in cancer cell lines as compared to 17-AAG. We demonstrate that 17-DMAG more potently induces caspase-dependent apoptosis of primary CLL cells compared to 17-AAG. This enhanced cytotoxicity is tumor cell selective as it spares normal T-cells and NK-cells, and only modestly affects normal B cells. In addition to the broad range of Hsp90 client proteins which are regulated by 17-AAG (AKT, CDK9, ZAP-70), we found that 17-DMAG was also able to deplete both IKKαa and IKKβ, the activating kinases of the NF-κB family of transcription factors. The impact of 17-DMAG on both IKKαa and β is very relevant, as there have been several studies investigating the effect of IKK inhibitors on in vitro apoptosis in CLL, however there is still no clear therapeutic option for targeting these kinases in the clinic. Most IKK inhibitors including 17-AAG are specific for the IKKβ subunit that mediates classical NF-κB signaling, leaving IKKαa and the alternative NF-κB pathway intact. This is particularly important given recent evidence by Lam et al. (Clin Can Res 2005 Jan 1;11(1):28-40) demonstrating that IKKαa is able to compensate for the loss of IKKβ in DLBCL cells lines. Therefore the ability of 17-DMAG to target both subunits of the IKK complex potentially makes it a very potent and effective NF-κB inhibitor in CLL. To validate the downstream significance of this NF-κB regulation, we show that 17-DMAG effectively reduces NF-κB nuclear localization DNA binding in CLL patient cells resulting in decreased transcript and protein levels of NF-κB targets MCL1 and BCL2, known to be major factors in CLL cell survival and drug resistance. The decrease in MCL1 and BCL2 following 17-DMAG treatment was not prevented by treatment with the caspase inhibitor zVAD-fmk even though viability was rescued, suggesting that the decrease in these survival proteins precedes cell death and is not simply a consequence of the apoptotic process. Finally, we determined the in vivo significance of 17-DMAG treatment using a TCL1-SCID transplant model. We found that NF-κB targets genes (A20, BCL2, cIAP, MCL1 and XIAP) were decreased in vivo following treatment with 17-DMAG. In addition to typical genes which are activated by NF-κB, we also determined the in vivo effect of 17-DMAG on NF-κB mediated transcriptional repression. Our group has recently determined that the transcription factor FOXD3 is transcriptionally silenced by an NF-κB repressor complex very early in the disease progression of the TCL1 mouse model, an event which facilitates subsequent global DNA methylation and gene silencing in CLL. We found that treatment with 17-DMAG leads to re-expression of FOXD3 suggesting that 17-DMAG is an effective therapeutic tool to target NF-κB mediated gene repression as well as NF-κB mediated expression of survival genes. Furthermore, 17-DMAG treatment significantly prolonged the survival of these mice (75 days vs. 66 days, p=0.027, n=10/group). Together, our data demonstrate that the HSP90 inhibitor 17-DMAG represents a novel multi-subunit IKK inhibitor leading to a decrease in anti-apoptosis genes relevant to CLL survival while increasing the expression of genes silenced during CLL disease progression. Given its oral formulation, which allows administration of 17-DMAG by continuous dosing and uninterrupted inhibition of HSP90, initiation of phase II clinical trials in CLL that include detailed pharmacodynamic studies monitoring NF-κB target genes are indicated. Disclosures: No relevant conflicts of interest to declare.

Author(s):  
Paulo L. Pfitzinger ◽  
Laura Fangmann ◽  
Kun Wang ◽  
Elke Demir ◽  
Engin Gürlevik ◽  
...  

Abstract Background Nerve-cancer interactions are increasingly recognized to be of paramount importance for the emergence and progression of pancreatic cancer (PCa). Here, we investigated the role of indirect cholinergic activation on PCa progression through inhibition of acetylcholinesterase (AChE) via clinically available AChE-inhibitors, i.e. physostigmine and pyridostigmine. Methods We applied immunohistochemistry, immunoblotting, MTT-viability, invasion, flow-cytometric-cell-cycle-assays, phospho-kinase arrays, multiplex ELISA and xenografted mice to assess the impact of AChE inhibition on PCa cell growth and invasiveness, and tumor-associated inflammation. Survival analyses were performed in a novel genetically-induced, surgically-resectable mouse model of PCa under adjuvant treatment with gemcitabine+/−physostigmine/pyridostigmine (n = 30 mice). Human PCa specimens (n = 39) were analyzed for the impact of cancer AChE expression on tumor stage and survival. Results We discovered a strong expression of AChE in cancer cells of human PCa specimens. Inhibition of this cancer-cell-intrinsic AChE via pyridostigmine and physostigmine, or administration of acetylcholine (ACh), diminished PCa cell viability and invasion in vitro and in vivo via suppression of pERK signaling, and reduced tumor-associated macrophage (TAM) infiltration and serum pro-inflammatory cytokine levels. In the novel genetically-induced, surgically-resectable PCa mouse model, adjuvant co-therapy with AChE blockers had no impact on survival. Accordingly, survival of resected PCa patients did not differ based on tumor AChE expression levels. Patients with higher-stage PCa also exhibited loss of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT), in their nerves. Conclusion For future clinical trials of PCa, direct cholinergic stimulation of the muscarinic signaling, rather than indirect activation via AChE blockade, may be a more effective strategy.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Obinna C. Ubah ◽  
Andrew J. Porter ◽  
Caroline J. Barelle

Anti-drug antibodies (ADAs), specific for biotherapeutic drugs, are associated with reduced serum drug levels and compromised therapeutic response. The impact of ADA on the bioavailability and clinical efficacy of blockbuster anti-hTNF-α monoclonal antibodies is well recognised, especially for adalimumab and infliximab treatments, with the large and complex molecular architecture of classical immunoglobulin antibody drugs, in part, responsible for the immunogenicity seen in patients. The initial aim of this study was to develop solid-phase enzyme-linked immunosorbent assays (ELISA) and an in vitro cell-based method to accurately detect ADA and estimate its impact on the preclinical in vivo efficacy outcomes of two novel, nonimmunoglobulin VNAR fusion anti-hTNF-α biologics (Quad-X™ and D1-NDure™-C4) and Humira®, a brand of adalimumab. Serum drug levels and the presence of ADA were determined in a transgenic mouse model of polyarthritis (Tg197) when Quad-X™ and Humira® were dosed at 1 mg/kg and D1-NDure™-C4 was dosed at 30 mg/kg. The serum levels of the Quad-X™ and D1-NDure™-C4 modalities were consistently high and comparable across all mice within the same treatment groups. In 1 mg/kg and 3 mg/kg Quad-X™- and 30 mg/kg D1-NDure™-C4-treated mice, an average trough drug serum concentration of 8 μg/mL, 50 μg/mL, and 350 μg/mL, respectively, were estimated. In stark contrast, Humira® trough serum concentrations in the 1 mg/kg treatment group ranged from <0.008 μg/mL to 4 μg/mL with trace levels detected in 7 of the 8 animals treated. Trough serum Humira® and Quad-X™ concentrations in 3 mg/kg treatment samples were comparable; however, the functionality of the detected Humira® serum was significantly compromised due to neutralising ADA. The impact of ADA went beyond the simple and rapid clearance of Humira®, as 7/8 serum samples also showed no detectable capacity to neutralise hTNF-α-mediated cytotoxicity in a murine fibrosarcoma (L929) cell assay. The neutralisation capacity of all the VNAR constructs remained unchanged at the end of the experimental period (10 weeks). The data presented in this manuscript goes some way to explain the exciting outcomes of the previously published preclinical in vivo efficacy data, which showed complete control of disease at Quad-X™ concentrations of 0.5 mg/kg, equivalent to 10x the in vivo potency of Humira®. This independent corroboration also validates the robustness and reliability of the assay techniques reported in this current manuscript, and while it comes with the caveat of a mouse study, it does appear to suggest that these particular VNAR constructs, at least, are of low inherent immunogenicity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Diana Spiegelberg ◽  
Andris Abramenkovs ◽  
Anja Charlotte Lundgren Mortensen ◽  
Sara Lundsten ◽  
Marika Nestor ◽  
...  

AbstractOncogenic client-proteins of the chaperone Heat shock protein 90 (HSP90) insure unlimited tumor growth and are involved in resistance to chemo- and radiotherapy. The HSP90 inhibitor Onalespib initiates the degradation of oncoproteins, and might also act as a radiosensitizer. The aim of this study was therefore to evaluate the efficacy of Onalespib in combination with external beam radiotherapy in an in vitro and in vivo approach. Onalespib downregulated client proteins, lead to increased apoptosis and caused DNA-double-strands. Monotherapy and combination with radiotherapy reduced colony formation, proliferation and migration assessed in radiosensitive HCT116 and radioresistant A431 cells. In vivo, a minimal treatment regimen for 3 consecutive days of Onalespib (3 × 10 mg/kg) doubled survival, whereas Onalespib with radiotherapy (3 × 2 Gy) caused a substantial delay in tumor growth and prolonged the survival by a factor of 3 compared to the HCT116 xenografted control group. Our results demonstrate that Onalespib exerts synergistic anti-cancer effects when combined with radiotherapy, most prominent in the radiosensitive cell models. We speculate that the depletion and downregulation of client proteins involved in signalling, migration and DNA repair mechanisms is the cause. Thus, individually, or in combination with radiotherapy Onalespib inhibits tumor growth and has the potential to improve radiotherapy outcomes, prolonging the overall survival of cancer patients.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1506-1506
Author(s):  
Marika Masselli ◽  
Serena Pillozzi ◽  
Massimo D'Amico ◽  
Luca Gasparoli ◽  
Olivia Crociani ◽  
...  

Abstract Abstract 1506 Although cure rates for children with acute lymphoblastic leukemia (ALL), the most common pediatric malignancy, have markedly improved over the last two decades, chemotherapy resistance remains a major obstacle to successful treatment in a significant proportion of patients (Pui CH et al. N Engl J Med., 360:2730–2741, 2009). Increasing evidence indicates that bone marrow mesenchymal cells (MSCs) contribute to generate drug resistance in leukemic cells (Konopleva M et al., Leukemia, 16:1713–1724, 2002). We contributed to this topic, describing a novel mechanism through which MSCs protect leukemic cells from chemotherapy (Pillozzi S. et al., Blood, 117:902–914, 2011.). This protection depends on the formation of a macromolecular membrane complex, on the plasma membrane of leukemic cells, the major players being i) the human ether-a-gò-gò-related gene 1 (hERG1) K+ channel, ii) the β1integrin subunit and iii) the SDF-1α receptor CXCR4. In leukemic blasts, the formation of this protein complex activates both the ERK 1/2 MAP kinases and the PI3K/Akt signalling pathways triggering antiapoptotic effects. hERG1 exerts a pivotal role in the complex, as clearly indicated by the effect of hERG1 inhibitors to abrogate MSCs protection against chemotherapeutic drugs. Indeed, E4031, a class III antiarrhythmic that specifically blocks hERG1, enhances the cytotoxicity of drugs commonly used to treat leukemia, both in vitro and in vivo. The latter was tested in a human ALL mouse model, consisting of NOD/SCID mice injected with REH cells, which are relatively resistant to corticosteroids. Mice were treated for 2 weeks with dexamethasone, E4031, or both. Treatment with dexamethasone and E4031 in combination nearly abolished bone marrow engraftment while producing marked apoptosis, and strongly reducing the proportion of leukemic cells in peripheral blood and leukemia infiltration of extramedullary sites. These effects were significantly superior to those obtained by treatment with either dexamethasone alone or E4031 alone. This model corroborated the idea that hERG1 blockers significantly increase the rate of leukemic cell apoptosis in bone marrow and reduced leukemic infiltration of peripheral organs. From a therapeutic viewpoint, to develop a pharmacological strategy based on hERG1 targeting we must consider to circumvent the side effects exerted by hERG1 blockers. Indeed, hERG1 blockers are known to retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, an effect that in some cases leads to life threatening ventricular arrhythmias (torsades de points). On the whole, it is mandatory to design and test non-cardiotoxic hERG1 blockers as a new strategy to overcome chemoresistance in ALL. On these bases, we tested compounds with potent anti-hERG1 effects, besides E4031, but devoid of cardiotoxicity (e.g. non-torsadogenic hERG1 blockers). Such compounds comprise erythromycin, sertindole and CD160130 (a newly developed drug by BlackSwanPharma GmbH, Leipzig, Germany). We found that such compounds exert a strong anti-leukemic activity both in vitro and in vivo, in the ALL mouse model described above. This is the first study describing the chemotherapeutic effects of non-torsadogenic hERG1 blockers in mouse models of human ALL. This work was supported by grants from the Associazione Genitori contro le Leucemie e Tumori Infantili Noi per Voi, Associazione Italiana per la Ricerca sul Cancro (AIRC) and Istituto Toscano Tumori. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Paula Greer ◽  
...  

Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes1-4. While it is well established that Myc functions by binding to its target genes to regulate their transcription5, the distribution of the transcriptional output across the human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals that a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructure, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly only in genes involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on infrastructure genes, which was accompanied by the abrogation of MB cells proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, provide new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in cancer cells empowered by a high level of Myc oncoprotein.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 39-39
Author(s):  
Ismini Halmer ◽  
Alexandra da Palma Guerreiro ◽  
Laura Beckmann ◽  
Christian Reinhardt ◽  
Hamid Kashkar ◽  
...  

Introduction: Eµ-TCL1-transgenic mouse models are often applied to discover and observe the development and kinetic of chronic lymphocytic leukaemia (CLL), as they develop diseases most similar to human CLL with a very high penetrance. To gain a better understanding on new therapy options and their effect on disease regression it is very important to observe therapy response, overall survival and symptoms during treatment of the disease not only in vitro but also in vivo in a suitable mouse model. However, application of BH3 mimetics like venetoclax is limited in the classical Eµ-TCL1 mouse model, since these mice are resistant towards venetoclax treatment. Therefore, we have generated a novel mouse model with Eµ-TCL1 as back bone and conditional overexpression of BCL2. Methods and results: We established a new mouse model (TBC) by crossbreeding mice expressing Eµ-TCL1tg/wtwith mice containing a B-cell specific conditional Bcl-2Rosa26/wt; Cd19CreCre/wtoverexpression and compared the disease kinetics to classical Eµ-TCL1 mice and to BC mice. TBC animals exhibit a severe leukocytosis at very early stages of disease development (12 weeks; mean 96.000/µl) in comparison to TC (15.100/µl) and BC (81.900/µl) mice. TBC mice develop CD23low/CD21neg leukemic B cells as they are known from TC mice with CD19+/CD5+ expression. Indeed, these mice show a significantly shortened overall survival of ~300 days (n=43) compared to TC mice (n=106; ~350 days; p&lt;0.001) and BC mice (n=28; ~410 days; p&lt;0.001) with severe clinical symptoms such as splenomegaly and cachexia. Strikingly, in contrast classical TC mice, which are resistant towards venetoclax, isolated B-cells of TBC mice are 10-times more sensitive towards venetoclax in vitro (0,02 µM) and can also be killed by the MCL1 inhibitors in nanomolar ranges, but not by BCL-xl inhibitors (&gt;2µM). Based on our in vitro data, we have treated TBC mice with venetoclax and observed an early and dramatic drop of leukocytes to normal ranges within the first two weeks of treatment. Leukocyte reduction lasted for the whole period of treatment. When investigating the spleens after sacrificing the mice they showed high amounts of dead cells inside the spleens, indicating that venetoclax was also efficient in lymphatic tissues as we know it from human trials. Conclusions: Autochthonous mouse models on which BH3 mimetics can be tested are rare. In our mouse model apoptosis screening in vitro we can show good results for BH3 mimetics with a high sensitivity already in low dosing. The BCL2-driven TCL1 mouse model enables the investigation of treatment with venetoclax in vivo to gain a better understanding of this frequently on patients applied therapy. Moreover, this model will help us to test other drugs (like MCL1 inhibitors) in combination with venetoclax to identify synergistic drugs in vivo in a timely manner. Furthermore, this model will offer us the opportunity to identify treatment strategies to overcome venetoclax resistance in vivo. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1957
Author(s):  
Sebastian Krug ◽  
Julia Weissbach ◽  
Annika Blank ◽  
Aurel Perren ◽  
Johannes Haybaeck ◽  
...  

Recently, we identified the homeodomain transcription factor Cut homeobox 1 (CUX1) as mediator of tumour de-differentiation and metastatic behaviour in human insulinoma patients. In insulinomas, CUX1 enhanced tumour progression by stimulating proliferation and angiogenesis in vitro and in vivo. In patients with non-functional pancreatic neuroendocrine tumours (PanNET), however, the impact of CUX1 remains to be elucidated. Here, we analysed CUX1 expression in two large independent cohorts (n = 43 and n = 141 tissues) of non-functional treatment-naïve and pre-treated PanNET patients, as well as in the RIP1Tag2 mouse model of pancreatic neuroendocrine tumours. To further assess the functional role of CUX1, expression profiling of DNA damage-, proliferation- and apoptosis-associated genes was performed in CUX1-overexpressing Bon-1 cells. Validation of differentially regulated genes was performed in Bon-1 and QGP1 cells with knock-down and overexpression strategies. CUX1 expression assessed by a predefined immunoreactivity score (IRS) was significantly associated with shorter progression-free survival (PFS) of pre-treated PanNET patients (23 vs. 8 months; p = 0.005). In treatment-naïve patients, CUX1 was negatively correlated with grading and recurrence-free survival (mRFS of 39 versus 8 months; p = 0.022). In both groups, high CUX1 levels indicated a metastatic phenotype. Functionally, CUX1 upregulated expression of caspases and death associated protein kinase 1 (DAPK1), known as mediators of tumour progression and resistance to cytotoxic drugs. This was also confirmed in both cell lines and human tissues. In the RIP1Tag2 mouse model, CUX1 expression was associated with advanced tumour stage and resistance to apoptosis. In summary, we identified the transcription factor CUX1 as mediator of tumour progression in non-functional PanNET in vitro and in vivo, indicating that the CUX1-dependent signalling network is a promising target for future therapeutic intervention.


Author(s):  
Mary Ellen Pavone ◽  
Allison R Grover ◽  
Rafael Confino ◽  
Elizabeth K Pearson ◽  
Saurabh Malpani ◽  
...  

Objective: Using a baboon model, we determined the changing expression of Retinoic Acid (RA) target genes during the menstrual cycle and during disease progression. This change could explain the cellular response and changes characteristic of endometriosis. In previous studies, we established that endometriosis affects the CRABP2:FABP5 ratio in an in vitro environment, shifting toward apoptosis and differentiation with higher CRABP2, and anti-apoptosis with higher levels of FABP5. Intervention(s): Endometriosis was induced in female baboons with intraperitoneal inoculation of menstrual endometrium ( n = 2–4). Tissue was harvested via endometrectomy during different stages of the menstrual cycle as well at 3, 6, and 12 month timepoints after inoculation with endometriosis. Main outcome measure(s): Real time PCR was used to quantify STRA6 (a gene responsible for retinol uptake), CRABP2 (a gene necessary for apoptotic and anti-apoptotic estrogenic RA effects), and FABP5 (a gene that mediates the anti-apoptotic actions of RA). Results: STRA6 and CRABP2 expression were highest in the proliferative phase and lowest in the late secretory phase. FABP5 expression remained stable throughout the 12 months following the induction of the disease, whereas STRA6 and CRABP2 continued to decrease during the same period. Conclusions: Our study confirms that a shift in the CRABP2:FABP5 ratio has similar in vivo effects as it does in vitro: changing RA expression with disease induction and progression. As CRABP2 may be important in determining cell fate in the endometrium, gene expression changes could contribute to the anti-apoptotic behavior of affected cells. As expression changes more during progression, earlier rather than later treatment becomes more critical in reducing the rate of disease progression.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-12-SCI-12
Author(s):  
Karin Vanderkerken ◽  
Kim De Veirman ◽  
Ken Maes ◽  
Eline Menu ◽  
Elke De Bruyne

Apoptosis plays a key role, not only in normal homeostasis but also in protection against genomic instability. Protection against apoptosis is a hallmark of cancer and is mainly regulated by the overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-Xl or Mcl-1. This results in increased survival of the tumor cells and resistance to therapy. This presentation will focus on MCL-1 (myeloid cell leukemia 1), its expression and its role as potential target in multiple myeloma (MM). MCL1 gene regions are one the most amplified gene regions in several human cancers and Mcl-1 activity is often associated with therapy resistance and relapse. Mcl-1 binds to and sequesters the pro-apoptotic BH3 proteins, thereby preventing apoptosis. Mcl-1 is overexpressed on MM cells from newly diagnosed patients compared to normal plasma cells and in MM cells at relapse. This overexpression is furthermore associated with a shorter survival of these patients. Increased Mcl-1 expression can result either from genetic lesions or by induction through interaction with the bone marrow microenvironment. Its expression is correlated with the molecular heterogeneity of the myeloma patients; while the CCDN1 group has high BCL2 and low MCL-1 expression; the MMSET and MAF group has high MCL-1 and low BCL2 expression. Unlike Bcl-2 and Bcl-Xl, Mcl-1 has a large unstructured aminoterminus and its activity is mainly dependent on posttranslational modifications. The bone marrow microenvironment, by producing high levels of interleukin 6, also induces the upregulation of Mcl-1. Furthermore, our group recently demonstrated that not only stromal cells in the bone marrow microenvironment, but also MDSC (myeloid derived suppressor cells) induce survival of MM cells by increasing Mcl-1 levels through the AMPK pathway. As such, these data suggest the potential therapeutic benefit of targeting Mcl-1 in MM patients. Developing the first-generation inhibitors appeared to be challenging, especially in view of the occurrence of unwanted off target effects. Recent preclinical data with new, selective Mcl-1 inhibitors show promising anti-tumor effects both in vitro and in in vivo myeloma models, either alone or in combination with the Bcl-2 selective inhibitor, venetoclax, especially as it was demonstrated that high levels of MCL-1 are associated with venetoclax resistance in MM. In addition, it was also shown that proteasome inhibition can trigger Mcl-1 accumulation, further pointing to the importance of Mcl-1 inhibition. Induction of NOXA, as an inhibitor of Mcl-1, is also suggested as a therapeutic option, especially in combinations with other drugs. Clinically, following preclinical results, several new Mcl-1 inhibitors have entered phase I trials. Most of them are still recruiting patients, and as such too early to have results. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1625-1625
Author(s):  
Simone Juliger ◽  
Takayuki Nakashima ◽  
Lenushka Maharaj ◽  
Toshihiko Ishii ◽  
Hiroshi Nakagawa ◽  
...  

Abstract Background : HSP90 plays an important role in chaperoning key proteins implicated in malignant disease and is a promising therapeutic target. We now report the in vitro and in vivo activity of a novel HSP90 inhibitor of non-ansamycin, non-purine analogue class, KW-2478, (Kyowa Hakko Kirin) in B-cell malignancies including multiple myeloma (MM), B-cell lymphoma (BCL) and mantle cell lymphoma (MCL) cells, and in primary tumour cells from MM and BCL patients. Procedures: The binding affinity of KW-2478 to HSP90 was examined using immobilised human HSP90a and a biotinylated HSP90 binding agent, radicicol (bRD). The effect of KW-2478 on cell viability, cell growth and apoptosis induction were evaluated in cell lines, with KW-2478 induced changes in major HSP90 client proteins studied by Western blotting analysis. The in vivo anti-tumour activity of KW-2478 was evaluated in a human MM xenograft mouse model,. Primary MM cells were studied using a co-culture system with the HS-5 bone marrow stromal cell line (BMSCs), while primary BCL samples were cultured on CHO cells stably transfected to produce CD40L. Results: KW-2478 inhibited the binding of bRD to HSP90α in concentration-dependent manner with an IC50 value of 3.8 nM. KW-2478 clearly inhibited cancer cell growth in all cell lines, with EC50 values from 101–252 nM in BCL, 81.4–91.4 nM in MCL and 120–622 nM in MM. The drug also exhibited potent growth inhibitory activity in primary CLL (n=3) and NHL (n=2) cells with EC50 values of 40–170 nM and 200–400 nM, respectively. In 2 of 4 human primary myeloma cells, KW-2478 at 2 μM inhibited cell growth by at least 50%. The presence of BMSCs did not affect drug activity against primary MM cells and importantly there was little or no effect on cell number or viability of normal BMSCs at up to 20 μM KW-2478. Exposure of MM and BCL cell lines to KW-2478 for 24 hours resulted in the degradation of HSP90 client proteins (IGF-1Rβ and Raf-1) and the induction of HSP70. KW-2478 also induced PARP cleavage and dephosphorylated Erk1/2 in NCI-H929 cells. Further studies in selected cell lines showed that exposure to 1 μM KW-2478 or lower resulted in the depletion of p53 and Akt proteins, a reduction in nuclear NFKB, and the cleavage of caspase-3. In the NCI-H929 xenograft model, KW-2478 (qd×5, i.v.) showed a statistically significant suppression of tumour growth at the doses of 25, 50, 100 and 200 mg/kg. Moreover, tumour regressions were observed at doses of 100 and 200 mg/kg, with a significant decrease in serum M protein concentration at doses of 50, 100 and 200 mg/kg. No severe KW-2478 toxicity was observed as assessed by treatment-related mortality and body weight change. Conclusions: The novel HSP90 inhibitor KW-2478 showed a potent anti-tumour activity both in vitro and in vivo, including activity in primary patient samples. The agent retained its activity in primary myeloma cells in the presence of BMSCs, suggesting that KW-2478 can overcome the protective effect of the bone marrow microenvironment. Additional pharmacokinetic and safety data support the further development of KW-2478 and the drug is currently undergoing clinical evaluation in a phase I trial.


Sign in / Sign up

Export Citation Format

Share Document