Stimulation of the B-Cell Receptor (BCR) Induces Successive Activation of STAT3 and Nuclear Factor-Kappa-B in CLL Cells

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4125-4125
Author(s):  
Uri Rozovski ◽  
David M. Harris ◽  
Ping LI ◽  
Zhiming Liu ◽  
Alessandra Ferrajoli ◽  
...  

Abstract Introduction: While in CLL cells phosphorylation of STAT3 on serine 727 residues is constitutive, phosphorylation of STAT3 on tyrosine 705 residues is inducible. Cytokines, such as IL-6, or IgM antibodies that activate CLL cells' BCR, induce tyrosine phosphorylated (p) STAT3. However, whereas IL-6 induces tyrosine pSTAT3 phosphorylation within 15 minutes, IgM induces pSTAT3 within ≥ 2-4 hours. The reason for the delayed IgM-induced phosphorylation is unknown. Like STAT3, the transcription factor NF-κB is constitutively activated in CLL cells and stimulation of the BCR activates NF-κB. Whether BCR stimulation upsurges NF-κB's transcriptional activity has not been elucidated. Because IL-6 is an NF-κB-target gene and, like IL-6, IgM antibodies induce tyrosine pSTAT3, we wondered whether prolonged stimulation with IgM antibodies induces tyrosine pSTAT3 via NF-κB-mediated induction of IL-6 in CLL cells. Methods: We incubated peripheral blood CLL cells in the presence or absence of IgM antibodies or IL-6, and harvested the cells at different time points. Total RNA was extracted using TRIzol (Life technology), cDNA was synthesized with Super Script First synthesis System for RT-PCR (Invitrogen), and NF-κB-target gene expression was quantified using RT-PCR (Invitrogen Life Sciences). To measure the levels of tyrosine pSTAT3 we used flow cytometry and to assess binding of NF-κB (p65) to DNA we utilized an electromobility shift assay (EMSA) using an NF-κB-binding site labelled DNA probe. Results: The transcriptional activity of NF-κB was studied using a PCR array that profiles the expression of 83 NF-κB-target genes. To reduce the 'noise' from stochastic variability in gene expression we first identified a core of genes that are expressed in cells from all patients' samples. To that aim we ranked the Ct values in each array and considered all genes that were amplified earlier than the cycle in the 75th percentile. Using this approach we identified 35 genes (42% of genes represented in the array) that were amplified in all 6 patients' samples. Annotation analysis revealed that the key pathways common to these 35 genes included 'Positive regulation of the NF-κB cascade', 'Inflammation' and 'Negative regulation of apoptosis'. Applying stringent criteria we identified 5 genes common to all cases that were amplified prior to the cycle representing the 25th percentile. Most amplified genes detected in all samples prior to stimulation (28/35, 80%) were also detected after 4 h of IgM stimulation, confirming that NF-κB is constitutively activated in CLL cells. However, 19 addition genes (19/83, 23%of the genes in the array) were detected in all IgM-stimulated but not in unstimulated cells. Remarkably, IL-6 was detected in all cases only after IgM stimulation. Furthermore, the delta-delta Ct method identified an IgM-induced time-dependent increment in IL-6 and IL-8, suggesting that IL-6 expression is dependent on stimulation of the BCR. Indeed IL-6 neutralizing antibodies significantly reduced the levels of tyrosine pSTAT3 in CLL cells incubated for 18 h with IgM antibodies. In addition, EMSA studies using CLL cells from 4 different patients showed that stimulation of the BCR with IgM antibodies increased the binding of NF-κB to DNA in a time-dependent manner. Moreover, the JAK2 inhibitor Ruxolitinib attenuated the NF-κB-DNA binding, suggesting that long exposure to IgM antibodies induces activation of NF-κB, a process mediated in part by IL-6 that activates the JAK2/STAT3 pathway. Conclusions: The BCR of CLL cells is stimulated in the bone marrow and lymph nodes. However, whereas the immediate effects of BCR stimulation have been excessively studied, the successive effect BCR stimulation is poorly understood. We found that stimulation of the BCR induces tyrosine phosphorylation of STAT3 via NF-κB-mediated induction of IL-6, a process that requires protracted BCR stimulation. Although NF-κB is constitutively activated in CLL cells, continuous activation of the BCR further activates NF-κB. Continuous stimulation of the BCR increases the levels of IL-6 that, upon binding to its receptor, activates STAT3 that in turn activates NF-κB. Taken together, our data suggest that agents, such as Ruxolitinib, that inhibit the successive effects of BCR activation, would become effective therapeutic agents in CLL. Disclosures Rozovski: Novartis: Other: Advisory board. Wierda:Glaxo-Smith-Kline Inc.: Research Funding; Celgene Corp.: Consultancy.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5328-5328
Author(s):  
Ruibo Zhang ◽  
Zi Ma ◽  
Shangqin Liu ◽  
Li He ◽  
Chaoping Xu ◽  
...  

Abstract Objective To understand the apoptotic effects and cereblon (CRBN) gene and protein expression induced by baicalein in MM cells. Methods Apoptotic MM cells induced baicalein,lenalidomide or combination of BAI and lenalidomide were stained by using Annexin-V and analyzed by flow cytometry. RT-PCR was used to detect CRBN gene expression in MM cells. CRBN protein expression was detected by western blot in MM cell lines. Results At the concentration of 40 μmol/L, baicalein can induce apoptosis of U266 cells in a time-dependent manner. At the different BAI treated time points (24h, 48h, 72h), the apoptotic cell percentages were 6.11%, 11.9%, 16.7%; After treated RPMI 8226 cells for 72 hours, combined application of baicalein and lenalidomide (both concentrations are 40 μmol/L) could induce more cell apoptosis than baicalein or lenalidomide alone. The apoptotic cell percentages induced by baicalein, lenalidomide or combined application of baicalein and lenalidomide were 15.9%, 4.27%, and 57.5%. CRBN gene expression detected by RT-PCR could be induced by baicalein in U266 cells in a dose-and time-dependent manner. Treated U266 cells for 24h at concentrations of 10 μmol/L, 20 μmol/L and 40 μmol/L, baicalein upregulated CRBN gene expression times were 2.246 ± 0.068, 2.399 ± 0.178 and 3.591 ± 0.061,respectively,compared to the control group. Statistically, the P values were 0.003, 0.009 and 0.001; Treated U266 cells at concentrations of 40 μmol/L at different time points (6h, 12h and 24h), baicalein upregulated CRBN gene expression times were 2.372 ± 0.079, 2.494 ± 0.189 and 3.228 ± 0.151, its P values were 0.002, 0.008 and 0.002.CRBN protein expression detected by using western blot could be induced by baicalein in both U266 and RPMI8226 cell lines. Conclusions Baicalein at suitable concentrations induced MM cells apoptosis in a time-dependent manner. Comparison with the single component used alone,combined application of baicalein and lenalidomide exhibited stronger inhibition effect on proliferation of RPMI 8226. Considering CRBN is the cellular target for lenalidomide, baicalein can up-regulate the CRBN gene and protein expression in MM cells and may enhance MM cell sensitivity to apoptotic stimuli. Therefore, baicalein up-regulated CRBN gene and protein expression and sensitized MM cells to apoptosis stimuli induced by lenalidomide. It provides us a possibility for baicalein clinical application to overcome the resistance to lenalidomide for MM patients in the future Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Ya-Lin Lu ◽  
Yangjian Liu ◽  
Matthew J. McCoy ◽  
Andrew S. Yoo

SummaryNeuron-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), direct cell fate switching of human fibroblasts to neurons when ectopically expressed by repressing anti-neurogenic genes. How these miRNAs function after the onset of the transcriptome switch to a neuronal fate remains unclear. Here, we identified direct targets of miRNAs by Argonaute (AGO) HITS-CLIP as reprogramming cells activate the neuronal program and reveal the role of miR-124 that directly promotes the expression of its target genes associated with neuronal development and function. The mode of miR-124 as a positive regulator is determined by a neuron-enriched RNA-binding protein, ELAVL3, that interacts with AGO and binds target transcripts, whereas the non-neuronal ELAVL1 counterpart fails to elevate the miRNA-target gene expression. Although existing literature indicate that miRNA-ELAVL1 interaction can result in either target gene upregulation or downregulation in a context-dependent manner, we specifically identified neuronal ELAVL3 as the driver for miRNA target gene upregulation in neurons. In primary human neurons, repressing miR-124 and ELAVL3 led to the downregulation of genes involved in neuronal function and process outgrowth, and cellular phenotypes of reduced inward currents and neurite outgrowth. Results from our study support the role of miR-124 promoting neuronal function through positive regulation of its target genes.


2011 ◽  
Vol 96 (7) ◽  
pp. E1206-E1211 ◽  
Author(s):  
Julien Durand ◽  
Antoine Lampron ◽  
Tania L. Mazzuco ◽  
Audrey Chapman ◽  
Isabelle Bourdeau

Abstract Background: Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Objective: Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Methods: Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. Results: RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. Conclusion: This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.


2020 ◽  
Vol 133 (15) ◽  
pp. jcs240176 ◽  
Author(s):  
Maiko Yamamoto ◽  
Yoshiaki Suwa ◽  
Kohta Sugiyama ◽  
Naoki Okashita ◽  
Masanori Kawaguchi ◽  
...  

ABSTRACTThe pluripotency-associated transcriptional network is regulated by a core circuitry of transcription factors. The PR domain-containing protein PRDM14 maintains pluripotency by activating and repressing transcription in a target gene-dependent manner. However, the mechanisms underlying dichotomic switching of PRDM14-mediated transcriptional control remain elusive. Here, we identified C-terminal binding protein 1 and 2 (CtBP1 and CtBP2; generically referred to as CtBP1/2) as components of the PRDM14-mediated repressive complex. CtBP1/2 binding to PRDM14 depends on CBFA2T2, a core component of the PRDM14 complex. The loss of Ctbp1/2 impaired the PRDM14-mediated transcriptional repression required for pluripotency maintenance and transition from primed to naïve pluripotency. Furthermore, CtBP1/2 interacted with the PRC2 complexes, and the loss of Ctbp1/2 impaired Polycomb repressive complex 2 (PRC2) and H3K27me3 enrichment at target genes after Prdm14 induction. These results provide evidence that the target gene-dependent transcriptional activity of PRDM14 is regulated by partner switching to ensure the transition from primed to naïve pluripotency.This article has an associated First Person interview with the first author of the paper


2021 ◽  
Vol 9 (2) ◽  
pp. 255
Author(s):  
Angelo Iacobino ◽  
Giovanni Piccaro ◽  
Manuela Pardini ◽  
Lanfranco Fattorini ◽  
Federico Giannoni

Previous studies on Escherichia coli demonstrated that sub-minimum inhibitory concentration (MIC) of fluoroquinolones induced the SOS response, increasing drug tolerance. We characterized the transcriptional response to moxifloxacin in Mycobacterium tuberculosis. Reference strain H37Rv was treated with moxifloxacin and gene expression studied by qRT-PCR. Five SOS regulon genes, recA, lexA, dnaE2, Rv3074 and Rv3776, were induced in a dose- and time-dependent manner. A range of moxifloxacin concentrations induced recA, with a peak observed at 2 × MIC (0.25 μg/mL) after 16 h. Another seven SOS responses and three DNA repair genes were significantly induced by moxifloxacin. Induction of recA by moxifloxacin was higher in log-phase than in early- and stationary-phase cells, and absent in dormant bacilli. Furthermore, in an H37Rv fluoroquinolone-resistant mutant carrying the D94G mutation in the gyrA gene, the SOS response was induced at drug concentrations higher than the mutant MIC value. The 2 × MIC of moxifloxacin determined no significant changes in gene expression in a panel of 32 genes, except for up-regulation of the relK toxin and of Rv3290c and Rv2517c, two persistence-related genes. Overall, our data show that activation of the SOS response by moxifloxacin, a likely link to increased mutation rate and persister formation, is time, dose, physiological state and, possibly, MIC dependent.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 758
Author(s):  
Sanjay Joshi ◽  
Christian Keller ◽  
Sharyn E. Perry

AGAMOUS-like 15 (AGL15) is a member of the MADS domain family of transcription factors (TFs) that can directly induce and repress target gene expression, and for which promotion of somatic embryogenesis (SE) is positively correlated with accumulation. An ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif of form LxLxL within the carboxyl-terminal domain of AGL15 was shown to be involved in repression of gene expression. Here, we examine whether AGL15′s ability to repress gene expression is needed to promote SE. While a form of AGL15 where the LxLxL is changed to AxAxA can still promote SE, another form with a strong transcriptional activator at the carboxy-terminal end, does not promote SE and, in fact, is detrimental to SE development. Select target genes were examined for response to the different forms of AGL15.


Author(s):  
Philipp Moritz Fricke ◽  
Angelika Klemm ◽  
Michael Bott ◽  
Tino Polen

Abstract Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an l-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. Key points • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


2018 ◽  
Vol 45 (12) ◽  
pp. 651-662 ◽  
Author(s):  
Emmanuel Enoch Dzakah ◽  
Ahmed Waqas ◽  
Shuai Wei ◽  
Bin Yu ◽  
Xiaolin Wang ◽  
...  

2009 ◽  
Vol 29 (9) ◽  
pp. 2335-2345 ◽  
Author(s):  
Utsav H. Saxena ◽  
Christina M. H. Powell ◽  
Jill K. Fecko ◽  
Roxanne Cacioppo ◽  
Hubert S. Chou ◽  
...  

ABSTRACT Transcription factor LSF is required for progression from quiescence through the cell cycle, regulating thymidylate synthase (Tyms) expression at the G1/S boundary. Given the constant level of LSF protein from G0 through S, we investigated whether LSF is regulated by phosphorylation in G1. In vitro, LSF is phosphorylated by cyclin E/cyclin-dependent kinase 2 (CDK2), cyclin C/CDK2, and cyclin C/CDK3, predominantly on S309. Phosphorylation of LSF on S309 is maximal 1 to 2 h after mitogenic stimulation of quiescent mouse fibroblasts. This phosphorylation is mediated by cyclin C-dependent kinases, as shown by coimmunoprecipitation of LSF and cyclin C in early G1 and by abrogation of LSF S309 phosphorylation upon suppression of cyclin C with short interfering RNA. Although mouse fibroblasts lack functional CDK3 (the partner of cyclin C in early G1 in human cells), CDK2 compensates for this absence. By transient transfection assays, phosphorylation at S309, mediated by cyclin C overexpression, inhibits LSF transactivation. Moreover, overexpression of cyclin C and CDK3 inhibits induction of endogenous Tyms expression at the G1/S transition. These results identify LSF as only the second known target (in addition to pRb) of cyclin C/CDK activity during progression from quiescence to early G1. Unexpectedly, this phosphorylation prevents induction of LSF target genes until late G1.


Sign in / Sign up

Export Citation Format

Share Document