scholarly journals Does human saliva decrease the antimicrobial activity of chlorhexidine against oral bacteria?

2014 ◽  
Vol 7 (1) ◽  
pp. 711 ◽  
Author(s):  
Thaer Abouassi ◽  
Christian Hannig ◽  
Katja Mahncke ◽  
Lamprini Karygianni ◽  
Martin Wolkewitz ◽  
...  
2000 ◽  
Vol 14 (1) ◽  
pp. 16-21 ◽  
Author(s):  
M. Edgerton ◽  
S.E. Koshlukova

Non-immune salivary proteins-including lactoperoxidase, lysozyme, lactoferrin, and histatins-are key components of the innate host defense system in the oral cavity. Many antimicrobial proteins contain multiple functional domains, with the result that one protein may have more than one mechanism of antimicrobial activity. These domains may be separated by proteolytic cleavage, creating smaller proteins with functional antimicrobial activity in saliva as described for lysozyme, lactoferrin, and histatins. These small cationic proteins then exert cytotoxic activity to oral bacteria and fungi. Salivary histatin 5 initiates killing of C. albicans through binding to yeast membrane proteins and non-lytic release of cellular ATP. Extracellular ATP may then activate fungal ATP receptors to induce ultimate cell death. This mechanism for fungal cytotoxicity may be shared by other antimicrobial cationic proteins. Microbicidal domains of salivary and host innate proteins should be considered as potential therapeutic agents in the oral cavity.


2020 ◽  
Vol 4 (s1) ◽  
pp. 121-121
Author(s):  
Zhou Ye ◽  
Joseph R. Rahimi ◽  
Nicholas G. Fischer ◽  
Hooi Pin Chew ◽  
Conrado Aparicio

OBJECTIVES/GOALS: Peri-implantitis is the inflammation of peri-implant mucosa and subsequent loss of supporting bone. Its treatment is only <40% successful mainly due to persistent bacterial infection. The goal of this project is to increase success rates by developing a robust antibiofilm multi-biomolecular membrane that can be placed around implant surfaces. METHODS/STUDY POPULATION: A collagen membrane was soaked in the antimicrobial peptide GL13K solution overnight to form an interpenetrating fibrillary network. The nanostructure of the membrane was imaged with scanning electron microscope (SEM). The hydrophobicity of the membrane was analyzed by water contact angle (WCA) measurements. The biodegradability was tested in a 0.01 mg/mL Type I collagenase solution for up to 5 weeks. The antimicrobial activity of the membrane was assessed with Gram-positive oral bacteria Streptococcus gordonii. The cytotoxicity was evaluated by culturing human gingival fibroblasts (HGF), and the osteogenesis was assessed using preosteoblasts MC3T3. Pure collagen membrane was used as the control. Statistical significance (p<0.05) was determined by one-way ANOVA with Tukey’s HSD test. RESULTS/ANTICIPATED RESULTS: The antimicrobial peptide GL13K self-assembled to short fibrils (< 1 µm long), which entangled with the larger collagen fibers (around 200 nm in diameter). The collagen fibers presented characteristic periodic banding structures, which provided biomimetic cues for cell behavior as extracellular matrix. The interpenetrated GL13K fibrils turned the highly hydrophilic collagen membrane to a hydrophobic membrane (WCA = 135 °) and significantly reduced the rate of degradation by collagenases. The developed membrane was efficient in preventing the attachment of S. gordonii. A large portion of the attached bacteria was killed on the surface of the membrane. The incorporation of GL13K did not affect the cytocompatibility of the membrane for HGF. DISCUSSION/SIGNIFICANCE OF IMPACT: We developed an antibiofilm membrane with interpenetrating collagen and antimicrobial peptide fibrils. The strong antimicrobial activity and low cytotoxicity support its further translational evaluation as scaffolds for increasing success rate in treating peri-implantitis.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 352
Author(s):  
Jan-Luca Schmid ◽  
Martin Kirchberg ◽  
Sandra Sarembe ◽  
Andreas Kiesow ◽  
Anton Sculean ◽  
...  

Periodontal therapy using antimicrobials that are topically applied requires slow or controlled release devices. The in vitro antimicrobial activity of biodegradable polymer formulations that contain a new minocycline lipid complex (P-MLC) was evaluated. The new P-MLC formulations that contained 11.5% minocycline were compared with pure minocycline or an existing commercial formulation, which included determination of minimal inhibitory concentration (MIC) values against two oral bacteria and activity on six-species periodontal biofilm. Moreover, the flow of gingival crevicular fluid (GCF) was modeled up to 42 days and the obtained eluates were tested both for MIC values and inhibiting biofilm formation. In general, MICs of the P-MLC formulations were slightly increased as compared with pure minocycline. Biofilm formation was clearly inhibited by all tested formulations containing minocycline with no clear difference between them. In 3.5 day old biofilms, all formulations with 250 µg/mL minocycline decreased bacterial counts by 3 log10 and metabolic activity with no difference to pure antimicrobials. Eluates of experimental formulations showed superiority in antimicrobial activity. Eluates of one experimental formulation (P503-MLC) still inhibited biofilm formation at 28 days, with a reduction by 1.87 log10 colony forming units (CFU) vs. the untreated control. The new experimental formulations can easily be instilled in periodontal pockets and represent alternatives in local antimicrobials, and thus warrant further testing.


2020 ◽  
Vol 202 (12) ◽  
Author(s):  
Delphine Dufour ◽  
Abdelahhad Barbour ◽  
Yuki Chan ◽  
Marcus Cheng ◽  
Taimoor Rahman ◽  
...  

ABSTRACT Bacteriocins are ribosomally synthesized proteinaceous antibacterial peptides. They selectively interfere with the growth of other bacteria. The production and secretion of bacteriocins confer a distinct ecological advantage to the producer in competing against other bacteria that are present in the same ecological niche. Streptococcus mutans, a significant contributor to the development of dental caries, is one of the most prolific producers of bacteriocins, known as mutacins in S. mutans. In this study, we characterized the locus encoding mutacin B-Ny266, a lantibiotic with a broad spectrum of activity. The chromosomal locus is composed of six predicted operon structures encoding proteins involved in regulation, antimicrobial activity, biosynthesis, modification, transport, and immunity. Mutacin B-Ny266 was purified from semisolid cultures, and two inhibitory peptides, LanA and LanA′, were detected. Both peptides were highly modified. Such modifications include dehydration of serine and threonine and the formation of a C-terminal aminovinyl-cysteine (AviCys) ring. While LanA peptide alone is absolutely required for antimicrobial activity, the presence of LanA′ enhanced the activity of LanA, suggesting that B-Ny266 may function as a two-peptide lantibiotic. The activation of lanAA′ expression is most likely controlled by the conserved two-component system NsrRS, which is activated by LanA peptide but not by LanA′. The chromosomal locus encoding mutacin B-Ny266 was not universally conserved in all sequenced S. mutans genomes. Intriguingly, the genes encoding LanAA′ peptides were restricted to the most invasive serotypes of S. mutans. IMPORTANCE Although dental caries is largely preventable, it remains the most common and costly infectious disease worldwide. Caries is initiated by the presence of dental plaque biofilm that contains Streptococcus mutans, a species extensively characterized by its role in caries development and formation. S. mutans deploys an arsenal of strategies to establish itself within the oral cavity. One of them is the production of bacteriocins that confer a competitive advantage by targeting and killing closely related competitors. In this work, we found that mutacin B-Ny266 is a potent lantibiotic that is effective at killing a wide array of oral streptococci, including nearly all S. mutans strains tested. Lantibiotics produced by oral bacteria could represent a promising strategy to target caries pathogens embedded in dental plaque biofilm.


2020 ◽  
Vol 20 (8) ◽  
pp. 4914-4919
Author(s):  
Weiming Sun ◽  
Xiangli Dong ◽  
Guohua Yu ◽  
Lang Shuai

Nanotechnologies have changed this world in various aspects including the oral medicine. It has been demonstrated that silver (Ag) nanomaterials can exhibit strong inhibition and killing effect on oral bacteria. Furthermore, the Ag nanomaterials have superb antimicrobial activity and nonacute toxic effects on human cells. Previously, the impact of Ag on oral bacteria was demonstrated by experiments. In this work, we applied molecular dynamics (MD) simulations to investigate the influence of Ag nanomaterials on oral bacteria. Firstly, by comparing change of molecular structure of staphylococcal protein A (SPA) with and without Ag, we found that Ag nanomaterials have strong effect on evolution of protein secondary structure of SPA. Secondly, it was observed that Ag has negligible effect on Solvent Accessible Surface Area (SASA) of SPA indicating that the Ag only changed its microstructure. Finally, it was found that the average amount of hydrogen bond in SPA was reduced in the presence of Ag which was origin of antimicrobial activity of Ag. It is believed that the growing interest in dental medicine with nanomaterials would lead molecular dynamics simulations to be an effective method for studying inhibition and killing pathological process of nanomaterials on oral bacteria.


2011 ◽  
Vol 02 (02) ◽  
pp. 37-42 ◽  
Author(s):  
Michelle K. Z. Yuen ◽  
Ricky W. K. Wong ◽  
Urban Hägg ◽  
Lakshman Samaranayake

2016 ◽  
Vol 27 (5) ◽  
pp. 497-501 ◽  
Author(s):  
Marcela Agne Alves Valones ◽  
◽  
Jane Sheila Higino ◽  
Paulo Roberto Eleutério Souza ◽  
Sérgio Crovella ◽  
...  

Abstract This study aimed to evaluate the antimicrobial activity of a dentifrice containing an alcoholic extract of rosemary on oral bacteria, compared to a commercially available herbal dentifrice. Standard strains of Streptococcus mutans (ATCC 25175), Streptococcus oralis (ATCC 9811) and Lactobacillus rhamnosus (ATCC 7469) were used, as well as different toothpastes based on rosemary (TR), on propolis (TH), triclosan (positive control) (TPC) and non-fluoridated dentifrice (negative control) (TNC). Bacteria were seeded in Petri dishes and paper discs soaked with dilutions of dentifrice placed on the plates. The inhibition halos were analyzed. It was observed that TR did not show statistical difference in relation to the TH to inhibit S. mutans and S. oralis, while TH was more active against L. rhamnosus. The toothpaste containing rosemary extract had the ability to inhibit the growth of S. mutans, S. oralis and L. rhamnosus, revealing an antimicrobial activity similar to commercially available toothpastes for inhibition of S. mutans and S. oralis.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amy B. Howell ◽  
Doris H. D'Souza

Pomegranates have been known for hundreds of years for their multiple health benefits, including antimicrobial activity. The recent surge in multidrug-resistant bacteria and the possibility of widespread global virus pandemics necessitate the need for additional preventative and therapeutic options to conventional drugs. Research indicates that pomegranates and their extracts may serve as natural alternatives due to their potency against a wide range of bacterial and viral pathogens. Nearly every part of the pomegranate plant has been tested for antimicrobial activities, including the fruit juice, peel, arils, flowers, and bark. Many studies have utilized pomegranate peel with success. There are various phytochemical compounds in pomegranate that have demonstrated antimicrobial activity, but most of the studies have found that ellagic acid and larger hydrolyzable tannins, such as punicalagin, have the highest activities. In some cases the combination of the pomegranate constituents offers the most benefit. The positive clinical results on pomegranate and suppression of oral bacteria are intriguing and worthy of further study. Much of the evidence for pomegranates’ antibacterial and antiviral activities against foodborne pathogens and other infectious disease organisms comes fromin vitrocell-based assays, necessitating further confirmation ofin vivoefficacy through human clinical trials.


2017 ◽  
Vol 18 (4) ◽  
pp. 312-316 ◽  
Author(s):  
Aarti A Bohora ◽  
Sharad R Kokate

ABSTRACT Introduction The main goal of endodontics is the prevention of apical periodontitis. This is due to the presence of persistent pathogenic microorganisms, such as Enterococcus faecalis, and its ability to directly cause acute and chronic inflammation in the periapical tissues. Lactobacillus has been shown to promote health in the intestines as well as to inhibit the growth of certain problematic oral bacteria. This study explores shifting the established paradigm of endodontic treatment, which has focused on eliminating all bacteria from the canal system and on elimination of the problematic bacteria through introducing probiotics. A preliminary work was performed to evaluate the possible effectiveness of probiotics in preventing the growth of E. faecalis. Materials and methods Two probiotic cultures Lactobacillus plantarum ATCC 8041 and Lactobacillus rhamnosus ATCC 7408 were selected to check their antimicrobial activity against E. faecalis ATCC 29212 by two methods: agar cup/well diffusion method and deferred antagonism test. Agar cup method A total of 0.5 mL of requisite test pathogen culture was inoculated into 20 mL of molten sterile Mueller and Hinton agar and cooled to 45 ± 2°C. Circular wells of diameter 10 mm were punched in each of the poured plates. Appropriately diluted test samples were added to the above-punched wells. The plates were incubated upright position at 37°C for 24 hours in aerobic conditions. Postincubation, zone of inhibition was measured. The cell-free supernatant of Lactobacillus species was also evaluated for antimicrobial activity. Deferred antagonism test The test probiotic strain was standardized to 0.1 optical density (OD) at 600 nm and inoculated in a 1 cm wide diametric streak across the surface of trypticase soy agar + yeast extract + calcium carbonate (TSYCa) agar using a sterile cotton swab. Then, the plate agar containing the test strain was incubated at 37°C for 24 hours under aerophilic condition and then standardized to 0.1 OD at 600 nm for overnight (18 hours, 37°C). A purified culture of indicator strain (pathogen) was streaked at right angles to the line of original producer growth. Postincubation plates were observed for the inhibition zone width of the indicator strain. Results Under the conditions of this study, Lactobacilli had an inhibitory effect on the growth of E. faecalis by agar cup method but not by deferred antagonism test. Conclusion This pilot study demonstrated that probiotics show a potential in root canal therapy. Clinical Significance If probioitcs are effective against endodontic pathogens, they can be potentially used as intracanal medicaments. This will be a novel concept of introducing bacteriotherapy in endodontics and replacing pathogenic bacteria by healthy bacteria, normal flora. How to cite this article Bohora AA, Kokate SR. Good Bugs vs Bad Bugs: Evaluation of Inhibitory Effect of Selected Probiotics against Enterococcus faecalis. J Contemp Dent Pract 2017;18(4):312-316.


2020 ◽  
Author(s):  
Ghada H Naguib ◽  
Mohamed T Hamed ◽  
Abdulkarim A Hatrom ◽  
Abeer M Alnowaiser ◽  
Sahar MN Bukhary ◽  
...  

Abstract Background The addition of antibacterial agents to oral prophylaxis materials showed inhibition of plaque accumulation and bacterial acid production. This study aimed to test the antimicrobial effect of distinctive oral mouth washes on an exemplary of oral bacteria after the addition of zein-coated MgO nanoparticles.Materials and Methods Three hundred and twelve groups were used in this study. MgO nanoparticles in five concentrations with zein and without zein-coating, were incorporated in three oral mouth washes: Listerine Zero, Listerine Total Control and Oral B in the mass percentages of 0.3%, 0.5%, 1%, 2%, 5% and 10%, in addition to controls with no MgO nanoparticles. The three mouthwashes with variable concentrations were studied in opposition of Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis and Candida albicans using two different tests, the Disc Diffusion Test (DDT) and Direct Contact Test (DCT). Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests.Results Results showed a highly significant statistical difference of antimicrobial activity for all tested mouth washes with Zein coated MgO nanoparticles on Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans in the disc diffusion test. While in the DCT, all tested mouth washes with MgO nanoparticles with and without zein coating showed antimicrobial activity on all tested microorganisms.Conclusion Zein coated MgO nanoparticles is a potent antimicrobial agent when added to oral mouth washes. It is recommended to incorporate Zein MgO nanoparticles to Oral mouth washes to improve its antibacterial property.


Sign in / Sign up

Export Citation Format

Share Document