scholarly journals Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liwei Zheng ◽  
Shengjie Ma ◽  
Dandan Shen ◽  
Hong Fu ◽  
Yue Wang ◽  
...  

Abstract Background In plants, histone modification (HM) genes participate in various developmental and defense processes. Gramineae plants (e.g., Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Setaria italica, Setaria viridis, and Zea mays) are important crop species worldwide. However, little information on HM genes is in Gramineae species. Results Here, we identified 245 TaHMs, 72 HvHMs, 84 SbHMs, 93 SvHMs, 90 SiHMs, and 90 ZmHMs in the above six Gramineae species, respectively. Detailed information on their chromosome locations, conserved domains, phylogenetic trees, synteny, promoter elements, and gene structures were determined. Among the HMs, most motifs were conserved, but several unique motifs were also identified. Our results also suggested that gene and genome duplications potentially impacted the evolution and expansion of HMs in wheat. The number of orthologous gene pairs between rice (Oryza sativa) and each Gramineae species was much greater than that between Arabidopsis and each Gramineae species, indicating that the dicotyledons shared common ancestors. Moreover, all identified HM gene pairs likely underwent purifying selection based on to their non-synonymous (Ka)/synonymous (Ks) nucleotide substitutions. Using published transcriptome data, changes in TaHM gene expression in developing wheat grains treated with brassinosteroid, brassinazole, or activated charcoal were investigated. In addition, the transcription models of ZmHMs in developing maize seeds and after gibberellin treatment were also identified. We also examined plant stress responses and found that heat, drought, salt, insect feeding, nitrogen, and cadmium stress influenced many TaHMs, and drought altered the expression of several ZmHMs. Thus, these findings indicate their important functions in plant growth and stress adaptations. Conclusions Based on a comprehensive analysis of Gramineae HMs, we found that TaHMs play potential roles in grain development, brassinosteroid- and brassinazole-mediated root growth, activated charcoal-mediated root and leaf growth, and biotic and abiotic adaptations. Furthermore, ZmHMs likely participate in seed development, gibberellin-mediated leaf growth, and drought adaptation.

2020 ◽  
Author(s):  
Liwei Zheng ◽  
Shengjie Ma ◽  
Dandan Shen ◽  
Hong Fu ◽  
Yue Wang ◽  
...  

Abstract Background: In pants, histone modification (HM) participates in various developmental and defenses processes. Gramineae plants were important crop species worldwide. However, little information on them is in gramineae species. Results: In six gramineaes, 245 TaHMs, 72 HvHMs, 84 SbHMs, 93 SvHMs, 90 SiHMs and 90 ZmHMs were respectively identified. Their detailed information, including chromosome locations, conserved domains, phylogenetic trees, synteny, promoter elements and gene structures, were identified. Among these HMs, most of motifs were conservative, while unique ones were also identified. Gene and genome duplications may result in the evolution and expansion of HMs in wheat. The number of gene pairs between rice and each gramineae was much greater than that between Arabidopsis and each gramineae, which indicated dicotyledons sharing common ancestors. Moreover, all identified HMs gene pairs may undergo purifying selection according to their Ka/Ks values. Expression profiles of TaHMs in developing wheat grain, responding to brassinosteroid, brassinazole as well as activated charcoal were investigated in published transcriptome data, and transcription models of ZmHMs in maize development seeds and after gibberellin treatment were also identified. In addition, heat, drought, salt, insect feeding, nitrogen and cadmium stresses influenced many TaHMs, and drought altered several ZmHMs expression. These findings indicated their important functions in plant growth and stress adaptions. Conclusion: In conclusion, a comprehensive analysis of six gramineae HM gene families was completed; TaHMs were likely to participate in grain development, brassinosteroid- as well as brassinazole-mediated root growth, activated charcoal-mediated root and leaf growth, and biotic and abiotic adaptions; ZmHMs take part in seed development, gibberellin-mediated leaf growth, and drought adaption.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 454 ◽  
Author(s):  
Balaji Aravindhan Pandian ◽  
Rajendran Sathishraj ◽  
Maduraimuthu Djanaguiraman ◽  
P.V. Vara Prasad ◽  
Mithila Jugulam

Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.


2021 ◽  
Vol 22 (3) ◽  
pp. 1252
Author(s):  
Jamie A. O’Rourke ◽  
Michelle A. Graham

Throughout the growing season, crops experience a multitude of short periods of various abiotic stresses. These stress events have long-term impacts on plant performance and yield. It is imperative to improve our understanding of the genes and biological processes underlying plant stress tolerance to mitigate end of season yield loss. The majority of studies examining transcriptional changes induced by stress focus on single stress events. Few studies have been performed in model or crop species to examine transcriptional responses of plants exposed to repeated or sequential stress exposure, which better reflect field conditions. In this study, we examine the transcriptional profile of soybean plants exposed to iron deficiency stress followed by phosphate deficiency stress (-Fe-Pi). Comparing this response to previous studies, we identified a core suite of genes conserved across all repeated stress exposures (-Fe-Pi, -Fe-Fe, -Pi-Pi). Additionally, we determined transcriptional response to sequential stress exposure (-Fe-Pi) involves genes usually associated with reproduction, not stress responses. These findings highlight the plasticity of the plant transcriptome and the complexity of unraveling stress response pathways.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 697
Author(s):  
Juan Mao ◽  
Wenxin Li ◽  
Jing Liu ◽  
Jianming Li

The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 304
Author(s):  
Tatyana Savchenko ◽  
Konstantin Tikhonov

Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 435
Author(s):  
Agnieszka Ludwiczak ◽  
Monika Osiak ◽  
Stefany Cárdenas-Pérez ◽  
Sandra Lubińska-Mielińska ◽  
Agnieszka Piernik

Salinization is a key soil degradation process. An estimated 20% of total cultivated lands and 33% of irrigated agricultural lands worldwide are affected by high salinity. Much research has investigated the influence of salt (mainly NaCl) on plants, but very little is known about how this is related to natural salinity and osmotic stress. Therefore, our study was conducted to determine the osmotic and ionic salt stress responses of selected C3 and C4 cultivated plants. We focused on the early growth stages as those critical for plant development. We applied natural brine to simulate natural salinity and to compare its effect to NaCl solution. We assessed traits related to germination ability, seedlings and plantlet morphology, growth indexes, and biomass and water accumulation. Our results demonstrate that the effects of salinity on growth are strongest among plantlets. Salinity most affected water absorption in C3 plants (28% of total traits variation), but plant length in C4 plants (17–27%). Compensatory effect of ions from brine were suggested by the higher model plants’ growth success of ca 5–7% under brine compared to the NaCl condition. However, trait differences indicated that osmotic stress was the main stress factor affecting the studied plants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Wang ◽  
Ming-Hua Wu ◽  
Dong Xiao ◽  
Ruo-Lan Huang ◽  
Jie Zhan ◽  
...  

Abstract Background As an important cash crop, the yield of peanut is influenced by soil acidification and pathogen infection. Receptor-like protein kinases play important roles in plant growth, development and stress responses. However, little is known about the number, location, structure, molecular phylogeny, and expression of RLKs in peanut, and no comprehensive analysis of RLKs in the Al stress response in peanuts have been reported. Results A total of 1311 AhRLKs were identified from the peanut genome. The AhLRR-RLKs and AhLecRLKs were further divided into 24 and 35 subfamilies, respectively. The AhRLKs were randomly distributed across all 20 chromosomes in the peanut. Among these AhRLKs, 9.53% and 61.78% originated from tandem duplications and segmental duplications, respectively. The ka/ks ratios of 96.97% (96/99) of tandem duplication gene pairs and 98.78% (646/654) of segmental duplication gene pairs were less than 1. Among the tested tandem duplication clusters, there were 28 gene conversion events. Moreover, all total of 90 Al-responsive AhRLKs were identified by mining transcriptome data, and they were divided into 7 groups. Most of the Al-responsive AhRLKs that clustered together had similar motifs and evolutionarily conserved structures. The gene expression patterns of these genes in different tissues were further analysed, and tissue-specifically expressed genes, including 14 root-specific Al-responsive AhRLKs were found. In addition, all 90 Al-responsive AhRLKs which were distributed unevenly in the subfamilies of AhRLKs, showed different expression patterns between the two peanut varieties (Al-sensitive and Al-tolerant) under Al stress. Conclusions In this study, we analysed the RLK gene family in the peanut genome. Segmental duplication events were the main driving force for AhRLK evolution, and most AhRLKs subject to purifying selection. A total of 90 genes were identified as Al-responsive AhRLKs, and the classification, conserved motifs, structures, tissue expression patterns and predicted functions of Al-responsive AhRLKs were further analysed and discussed, revealing their putative roles. This study provides a better understanding of the structures and functions of AhRLKs and Al-responsive AhRLKs.


Sign in / Sign up

Export Citation Format

Share Document