scholarly journals Up-regulation of long non-coding RNA CYTOR induced by icariin promotes the viability and inhibits the apoptosis of chondrocytes

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoyou Wang ◽  
Lei Zhang ◽  
Huarui Shen ◽  
Qi Hao ◽  
Shijie Fu ◽  
...  

Abstract Background Icariin (ICAR) is the main effective component extracted from epimedium, and is reported to have the potential to treat osteoarthritis (OA). However, its pharmacological function on chondrocytes has not been fully clarified. Methods Different doses of ICAR were used to treat chondrocyte cell lines, including CHON-001 and ATDC5. Then the expressions of different lncRNAs were measured by qRT-PCR. Interleukin-1β (IL-1β) was used to simulate the inflammatory response environment of chondrocytes. Overexpression plasmids and short hairpin RNAs of lncRNA CYTOR were used to construct gain-of-function and loss of function models. CCK-8 was conducted to determine the cell viability. Flow cytometry was used to detect the apoptosis of chondrocytes. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors (IL-6, IL-8, TNF-α) in the supernatant of the chondrocytes. Results Compared with other lncRNAs, CYTOR was changed most significantly in both CHON-001 and ATDC5 cells after treatment with ICAR. ICAR promotes the viability and inhibits the apoptosis of CHON-001 and ATDC5 cells induced by IL-1β, accompanied with reduced levels of inflammatory factors. Overexpression of CYTOR facilitated the viability of chondrocytes, while repressed their apoptosis and inflammatory response. What’s more, knockdown of CYTOR reversed the protective effects of ICAR on chondrocytes. Conclusion CYTOR was a pivotal lncRNA involved in the protective function of ICAR on chondrocytes.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiaoxia Ye ◽  
Mingming Zhu ◽  
Xiaohang Che ◽  
Huiyang Wang ◽  
Xing-Jie Liang ◽  
...  

Abstract Background Microglial activation is a prominent feature of neuroinflammation, which is present in almost all neurodegenerative diseases. While an initial inflammatory response mediated by microglia is considered to be protective, excessive pro-inflammatory response of microglia contributes to the pathogenesis of neurodegeneration. Although autophagy is involved in the suppression of inflammation, its role and mechanism in microglia are unclear. Methods In the present study, we studied the mechanism by which lipopolysaccharide (LPS) affects microglial autophagy and the effects of autophagy on the production of pro-inflammatory factors in microglial cells by western blotting, immunocytochemistry, transfection, transmission electron microscopy (TEM), and real-time PCR. In a mouse model of neuroinflammation, generated by intraventricular injection of LPS (5 μg/animal), we induced autophagy by rapamycin injection and investigated the effects of enhanced autophagy on microglial activation by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. Results We found that autophagic flux was suppressed in LPS-stimulated N9 microglial cells, as evidenced by decreased expression of the autophagy marker LC3-II (lipidated form of MAP1LC3), as well as increased levels of the autophagy adaptor protein SQSTM1. LPS significantly decreased Vps34 expression in N9 microglial cells by activating the PI3KI/AKT/MTOR pathway without affecting the levels of lysosome-associated proteins and enzymes. More importantly, overexpression of Vps34 significantly enhanced the autophagic flux and decreased the accumulation of SQSTM1 in LPS-stimulated N9 microglial cells. Moreover, our results revealed that an LPS-induced reduction in the level of Vps34 prevented the maturation of omegasomes to phagophores. Furthermore, LPS-induced neuroinflammation was significantly ameliorated by treatment with the autophagy inducer rapamycin both in vitro and in vivo. Conclusions These data reveal that LPS-induced neuroinflammation in N9 microglial cells is associated with the inhibition of autophagic flux through the activation of the PI3KI/AKT/MTOR pathway, while enhanced microglial autophagy downregulates LPS-induced neuroinflammation. Thus, this study suggests that promoting the early stages of autophagy might be a potential therapeutic approach for neuroinflammation-associated diseases.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


2021 ◽  
Author(s):  
Yan Zhou ◽  
Jun-hao Wang ◽  
Jian-peng Han ◽  
Jian-yong Feng ◽  
Kuo Guo ◽  
...  

Abstract Objective: Chronic nonbacterial prostatitis (CNP) has remained one of the most prevalent urological diseases, particularly in older men. Dihydroartemisinin (DHA) has been identified as a semi-synthetic derivative of artemisinin that exhibits broad protective effects. However, the role of DHA in inhibiting CNP inflammation and prostatic epithelial cell proliferation remains largely unknown. Materials and Methods: CNP mice model was induced by carrageenan and Haemotoxylin Eosin (HE) ,immunofluorescence and immunochemistry staining were used to confirm CNP and E2F7 expression. Human prostatic epithelial cells (HPECs) and RWPE-1 was induced by lipopolysaccharide (LPS) to mimic CNP model in vitro. Real-time quantitative PCR and Western blot were used to detect proliferation and inflammatory genes expression. Cell proliferation was determined using MTT assay.Results: DHA significantly alleviated the rough epithelium and inhibited multilamellar cell formation in the prostatic gland cavity and prostatic index induced by carrageenan. In addition, DHA decreased the expression of TNF-α and IL-6 inflammatory factors in prostatitis tissues and in LPS-induced epithelial cells. Upregulation of transcription factor E2F7, which expression was inhibited by DHA, was found in CNP tissues, human BPH tissues and LPS-induced epithelial cells inflammatory response. Mechanically, we found that depletion of E2F7 by shRNA inhibited epithelial cell proliferation and LPS-induced inflammation while DHA further enhance these effects. Furthermore, HIF1α was transcriptional regulated by E2F7 and involved in E2F7-inhibited CNP and cellular inflammatory response. Interestingly, we found that inhibition of HIF1α blocks E2F7-induced cell inflammatory response but does not obstruct E2F7-promoted cell growth.Conclusion: The results revealed that DHA inhibits the CNP and inflammation by blocking the E2F7/HIF1α pathway. Our findings provide new evidence for the mechanism of DHA and its key role in CNP, which may provide an alternative solution for the prevention and treatment of CNP.


2021 ◽  
Vol 27 ◽  
Author(s):  
Jingbo Zhou ◽  
Shu Zhang ◽  
Xinyi Sun ◽  
Yan Lou ◽  
Jiangyi Yu

Hyperoside, a flavonol glycoside, is derived from plants of the genera Hypericum and Crataegus. Recent studies have indicated the anti-apoptotic and anti-inflammatory roles of hyperoside. The present study was designed to measure the effects of hyperoside on high glucose (HG)-treated HK-2 cells. HK-2 is a human papillomavirus 16 transformed cell line and can be used as a model for normal tubular cell. Cell apoptosis was examined by TUNEL assays and flow cytometry analysis. Inflammatory response was detected by Enzyme linked immunosorbent assay kits. Western blotting was applied to detect protein levels of apoptosis-related genes and inflammatory cytokines. Mechanistical assays including luciferase reporter and RNA pull down assays were applied to detect the binding relationship between molecules. We identified that hyperoside protected HK-2 cells against HG-induced apoptosis and inflammation. Moreover, miR-499a-5p was upregulated by hyperoside in a dose dependent manner. MiR-499a-5p inhibition rescued the suppressive effects of hyperoside on apoptosis and inflammation of HG-treated HK-2 cells. Furthermore, miR-499a-5p targeted NRIP1 to inhibit its mRNA expression, and further suppressed its translation. NRIP1 was downregulated by hyperoside in a dose dependent manner. Finally, rescue assays indicated that miR-499a-5p inhibition rescued the protective effects of hyperoside on apoptosis and inflammatory response of HK-2 cells by NRIP1. In conclusion, our findings revealed that hyperoside alleviates HG-induced apoptosis and inflammatory response of HK-2 cells by the miR-499a-5p/NRIP1 axis.


Author(s):  
Tian Li ◽  
Xiaojun Ji ◽  
Jingfeng Liu ◽  
Xinjie Guo ◽  
Ran Pang ◽  
...  

Introduction: Increased permeability of the renal capillaries is a common consequence of sepsis-associated acute kidney injury. Vascular endothelial (VE)-cadherin is a strictly endothelial-specific adhesion molecule that can control the permeability of the blood vessel wall. Additionally, autophagy plays an important role in maintaining cell stability. Ulinastatin, a urinary trypsin inhibitor, attenuates the systemic inflammatory response and visceral vasopermeability. However, it is uncertain whether ulinastatin can improve renal microcirculation by acting on the endothelial adhesion junction. Methods: We observed the effect of ulinastatin in a septic rat model using contrast-enhanced ultrasonography (CEUS) to evaluate the perfusion of the renal cortex and medulla. Male adult Sprague-Dawley rats were subjected to cecal ligation and puncture and divided into the sham, sepsis, and ulinastatin groups. Ulinastatin (50,000 U/kg) was injected into the tail vein immediately after the operation. The CEUS was performed to evaluate the renal microcirculation perfusion at 3, 6, 12, and 24 hours after the operation. Histological staining was used to evaluate kidney injury scores. Western blot (WB) was used to quantify the expression of VE-cadherin, LC3II, and inflammatory factors [interleukin -1β (IL-1β), interleukin -6 (IL-6), and tumor necrosis factor-α (TNF-α)] in kidney tissue, and enzyme-linked immunosorbent assay (ELISA) detected serum inflammatory factors and kidney function and early kidney injury biomarker levels. Results: Compared with the sham group, ulinastatin reduced the inflammatory response, inhibited autophagy, maintained the expression of VE-cadherin, and meliorated cortical and medullary perfusion. Conclusion: Ulinastatin effectively protects the adhesion junction and helps ameliorate the perfusion of kidney capillaries during sepsis by the inhibition of autophagy and the expression of inflammatory factors.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Li ◽  
Li Li ◽  
Tian Lan

Abstract Background Osteoarthritis (OA) is a kind of systemic musculoskeletal disorder and a most important factor for causing disability and physical painfulness. Nevertheless, due to the fact that OA can be triggered by multiple etiological factors, this disease is hard to be cured. Therefore, it is of great necessity for us to find novel targets or drugs for OA treatment. Materials and methods The chondrocytes were treated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) to induce pyroptosis in OA. The cell proliferation was detected by Cell Counting Kit-8 assay (CCK-8 assay). Enzyme-linked immunosorbent assay (ELISA) was used for the detection of pyroptosis-related inflammatory factors. Then, the antagonists for gasdermin D (GSDMD) (disulfiram) and high mobility group box 1 (HMGB1) (glycyrrhizic acid) were used to treat the cell model to observe the effects of disulfiram and glycyrrhizic acid on the proliferation of chondrocytes in OA. The protein levels of pyroptosis-related inflammatory factors were measured by western blot, and the levels of aldehyde dehydrogenase (ALDH) and reactive oxygen species (ROS) were measured by corresponding commercial kits. Results After chondrocytes were induced by LPS and ATP, the cell proliferation was decreased and the expressions of pyroptosis-related inflammatory factors were increased. Disulfiram and glycyrrhizic acid treatment led to enhanced cell proliferation and increased expressions of pyroptosis-related inflammatory factors, while disulfiram showed better alleviative effects on the inflammation in chondrocytes in OA. However, co-treatment with disulfiram at a high concentration and glycyrrhizic acid did not result in higher proliferation of chondrocytes and alleviated inflammation, but led to oxidative stress. Conclusion In conclusion, co-treatment with disulfiram and glycyrrhizic acid at a standard concentration suppresses the inflammatory response of chondrocytes, which may provide guidance for the use of the drugs in the treatment of OA.


2021 ◽  
Vol 20 (10) ◽  
pp. 2023-2028
Author(s):  
Lingzhen Kong ◽  
Zheng Zhang

Purpose: To explore the protective effects of artemisinin (Art) against diabetic retinopathy (DR) and the probable mechanism of action.Methods: MIO-M1 cells were treated with high glucose (HG) and Art, and the cells’ proliferative ability was determined using cell counting kit-8 (CCK-8) and 5-ethynyl-2’-deoxyuridine (EdU) assay. The relative levels of inflammatory factors in the culture medium of MIO-M1 cells were determined by enzyme-linked immunosorbent assay (ELISA). while the expression levels of CASC2, miR-155 and Sirtuin1 (SIRT1) in MIO-M1 cells were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Interaction of Art with the cell target was assessed using dual-luciferase reporter assay. The role of the CASC2/miR-155/SIRT1 axis in Art-induced protection against the proliferation and inflammation of MIO-M1 cells was evaluated.Results: HG induced elevated proliferation of MIO-M1 cells and production of inflammatory factors, but these effects were countered by Art treatment (p < 0.05). CASC2 and SIRT1 were upregulated, while miR-155 was downregulated in HG-treated MIO-M1 cells; changes in their expressions remained the same following Art treatment. CASC2/miR-155/SIRT1 axis was responsible for the ameliorative effect of Art on HG-treated MIO-M1 cells.Conclusion: Artemisinin treatment inhibits cell activation and production of pro-inflammatory cytokines in HG-induced MIO-M1 cells via CASC2/miR-155/SIRT1 axis. Thus, artemisinin has potentials for development into a therapeutic agent for the management of diabetic retinopathy.


2018 ◽  
Vol 61 (4) ◽  
pp. 231-239 ◽  
Author(s):  
Yan-hui Bai ◽  
Yong Lv ◽  
Wei-qun Wang ◽  
Guang-li Sun ◽  
Hao-hao Zhang

Human corneal fibroblasts (HCFs) are implicated in corneal neovascularization (CRNV). The mechanisms underlying the inflammatory response in HCFs and the development of CRNV were explored in this study. Alkali burns were applied to the corneas of rats to establish a CRNV model. The expression of long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) and mRNA and protein levels of nuclear factor kappa B (NF-κB)- activating protein (NKAP) were examined by quantitative real-time (qRT-PCR) and Western blot methods, respectively. Lipopolysaccharide (LPS) is used to stimulate HCFs for inflammatory response. The level of inflammation factors in HCF supernatant was detected using an enzyme-linked immunosorbent assay (ELISA). Binding and interactions between NEAT1 and miRNA 1246 (miR-1246) were determined by RNA immunoprecipitation (RIP) and RNA pull-down assays in HCFs. Compared with the control group (n = 6), NEAT1 was upregulated in the corneas of the CRNV rat model (n = 6). The expression of NEAT1 in HCFs was upregulated by LPS. Downregulation of NEAT1 suppressed the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). NEAT1 could bind and interact with miR-1246. LPS regulated the expression of NKAP and NF-κB signaling via the NEAT1/miR-1246 pathway. Downregulation of NEAT1in vivoinhibited CRNV progression in the CRNV rat model. The lncRNA NEAT1 induced secretion of inflammatory factors, mediated by NF-κB, by targeting miR-1246, thereby promoting CRNV progression.


2020 ◽  
Vol 25 (43) ◽  
pp. 4613-4621 ◽  
Author(s):  
He Chunlei ◽  
Zhao Chang ◽  
Liu Sheng ◽  
Zhong Yanchun ◽  
Liu Lulin ◽  
...  

Background: Osteoarthritis (OA) pertains to a chronic disease of degenerative joints distinguished by articular cartilage destruction, subchondral bone remodeling, osteophyte formation, and inflammatory changes. Chondrocyte apoptosis is inextricably linked to cartilage degeneration. SRY-related high-mobility-group-box 9 (SOX9) is a well-acknowledged transcription factor in the chondrogenesis. Nevertheless, the detailed function of miR-138-5p/SOX9 in OA remains to be fully clarified. Materials and Methods: qRT-PCR was performed to measure the expressions of miR-138-5p and SOX9 mRNA in OA and normal cartilage tissues and cells. Human chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to simulate the inflammatory response environment of OA. miR-138-5p mimics, miR-138-5p inhibitors, and SOX9 small interfering RNA (siRNA) were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 was conducted to determine the cell viability and transwell assay was used to monitor the migration of cells. Western blot was carried out to detect the expressions of apoptosis- related factors. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. TargetScan predicted SOX9 was a target gene of miR-138-5p, which was then verified by luciferase assay. Results: miR-138-5p expression was down-regulated in OA and regulated SOX9 expression. The downregulation of miR-138-5p facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while impeded their apoptosis and inflammatory response. Besides, down-regulated SOX9 can counteract the promoting effect of down-regulated miR-138-5p on the proliferation and migration of chondrocytes. Conclusion: miR-138-5p can arrest the proliferation and migration of CHON-001 and ATDC5 via restraining SOX9, and facilitate the apoptosis and inflammation. This study revealed the protective effect of down-regulated miR-138-5p on the inflammatory injury of chondrocytes caused by IL-1β.


Cartilage ◽  
2020 ◽  
pp. 194760351990080 ◽  
Author(s):  
Liqiang Zhi ◽  
Jianwu Zhao ◽  
Hongmou Zhao ◽  
Zhong Qing ◽  
Hongliang Liu ◽  
...  

Background Long noncoding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) is an oncogenic lncRNA; however, its role in osteoarthritis (OA) pathology still remains unknown. Materials and Methods qRT-PCR was performed to measure the expressions of OIP5-AS1, miR-29b-3p and progranulin (PGRN) mRNA in OA cartilage tissues and normal cartilage tissues. Chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to induce the inflammatory response. Overexpression plasmids, microRNA mimics, microRNA inhibitors and small interfering RNAs were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 assay was used for determining the cell viability and Transwell assay was used for monitoring cell migration. Western blot was applied to measure the expressions of apoptosis-related proteins. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. StarBase and TargetScan were used to predict the binding sites between OIP5-AS1 and miR-29b-3p, miR-29b-3p and 3′-UTR of PGRN respectively, which were verified by dual luciferase reporter assay. Results OIP5-AS1 and PGRN mRNA were downregulated while miR-29b-3p was upregulated in OA tissues and models. The up-regulated OIP5-AS1 facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while ameliorated the apoptosis and inflammatory response. However, miR-29b-3p had opposite effects. PGRN was identified as a target gene of miR-29b-3p, which could be indirectly suppressed by OIP5-AS1 knockdown. Conclusion Downregulation of OIP5-AS1 induced by IL-1β could inhibit the proliferation and migration abilities of CHON-001 and ATDC5 cells and facilitate the apoptosis and inflammation response via regulating miR-29b-3p/PGRN axis.


Sign in / Sign up

Export Citation Format

Share Document