LncRNA NEAT1 promotes inflammatory response and induces corneal neovascularization

2018 ◽  
Vol 61 (4) ◽  
pp. 231-239 ◽  
Author(s):  
Yan-hui Bai ◽  
Yong Lv ◽  
Wei-qun Wang ◽  
Guang-li Sun ◽  
Hao-hao Zhang

Human corneal fibroblasts (HCFs) are implicated in corneal neovascularization (CRNV). The mechanisms underlying the inflammatory response in HCFs and the development of CRNV were explored in this study. Alkali burns were applied to the corneas of rats to establish a CRNV model. The expression of long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) and mRNA and protein levels of nuclear factor kappa B (NF-κB)- activating protein (NKAP) were examined by quantitative real-time (qRT-PCR) and Western blot methods, respectively. Lipopolysaccharide (LPS) is used to stimulate HCFs for inflammatory response. The level of inflammation factors in HCF supernatant was detected using an enzyme-linked immunosorbent assay (ELISA). Binding and interactions between NEAT1 and miRNA 1246 (miR-1246) were determined by RNA immunoprecipitation (RIP) and RNA pull-down assays in HCFs. Compared with the control group (n = 6), NEAT1 was upregulated in the corneas of the CRNV rat model (n = 6). The expression of NEAT1 in HCFs was upregulated by LPS. Downregulation of NEAT1 suppressed the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). NEAT1 could bind and interact with miR-1246. LPS regulated the expression of NKAP and NF-κB signaling via the NEAT1/miR-1246 pathway. Downregulation of NEAT1in vivoinhibited CRNV progression in the CRNV rat model. The lncRNA NEAT1 induced secretion of inflammatory factors, mediated by NF-κB, by targeting miR-1246, thereby promoting CRNV progression.

Author(s):  
Honglin Qu ◽  
Ruilian Liu ◽  
Jiaqin Chen ◽  
Lan Zheng ◽  
Rui Chen

Objective: To investigate the role of aerobic exercise in inhibiting chronic unpredictable mild stress (CUMS) depressed mice hippocampal inflammatory response and its potential mechanisms. Methods: Fifty-four male eight-week-old C57BL/6 mice were divided as control group (CG) (18 mice) and model group (36 mice). Model group mice were treated with 13 chronic stimulating factors for 28 days to set up the CUMS depression model. Neurobehavioral assessment was performed after modeling. The mice in the model group were randomly divided into the control model group (MG) and the aerobic exercise group (EG), with 18mice in each group. The EG group carried out the adaptive training of the running platform: 10 m/min, 0° slope, and increased by 10 minutes per day for 6 days. The formal training was carried for 8 weeks with 10 m/min speed, 0° slope, 60 min/d, 6 d/Week. After the training, a neurobehavioral assessment was performed, and hippocampus IL-1β and IL-10 protein levels were detected by ELISA. RT–PCR was used to detect the expression of miR-223 and TLR4, MyD88, and NF-κB in the hippocampus. Western blot was used to detect the expression of TLR4 and phosphorylated NF-κBp65 protein in the hippocampus. Results: The hippocampus function of CUMS depression model mice was impaired. The forced swimming and forced tail suspension time were significantly prolonged, and inflammatory factors IL-1β were significantly increased in the hippocampus. Aerobic exercise significantly improves CUMS-depressed mice hippocampal function, effectively reducing depressive behavior and IL-1β levels, and increasing IL-10 levels. Besides, aerobic exercise significantly upregulates the expression level of miR-223 and inhibits the high expression of TLR4, MyD88, and NF-κB. Conclusion: Aerobic exercise significantly increases the CUMS-depressed mice hippocampus expression of miR-223, and inhibits the downstream TLR4/MyD88-NF-κB signaling pathway and the hippocampal inflammatory response, which contributes to the improvement of the hippocampal function.


Author(s):  
Tian Li ◽  
Xiaojun Ji ◽  
Jingfeng Liu ◽  
Xinjie Guo ◽  
Ran Pang ◽  
...  

Introduction: Increased permeability of the renal capillaries is a common consequence of sepsis-associated acute kidney injury. Vascular endothelial (VE)-cadherin is a strictly endothelial-specific adhesion molecule that can control the permeability of the blood vessel wall. Additionally, autophagy plays an important role in maintaining cell stability. Ulinastatin, a urinary trypsin inhibitor, attenuates the systemic inflammatory response and visceral vasopermeability. However, it is uncertain whether ulinastatin can improve renal microcirculation by acting on the endothelial adhesion junction. Methods: We observed the effect of ulinastatin in a septic rat model using contrast-enhanced ultrasonography (CEUS) to evaluate the perfusion of the renal cortex and medulla. Male adult Sprague-Dawley rats were subjected to cecal ligation and puncture and divided into the sham, sepsis, and ulinastatin groups. Ulinastatin (50,000 U/kg) was injected into the tail vein immediately after the operation. The CEUS was performed to evaluate the renal microcirculation perfusion at 3, 6, 12, and 24 hours after the operation. Histological staining was used to evaluate kidney injury scores. Western blot (WB) was used to quantify the expression of VE-cadherin, LC3II, and inflammatory factors [interleukin -1β (IL-1β), interleukin -6 (IL-6), and tumor necrosis factor-α (TNF-α)] in kidney tissue, and enzyme-linked immunosorbent assay (ELISA) detected serum inflammatory factors and kidney function and early kidney injury biomarker levels. Results: Compared with the sham group, ulinastatin reduced the inflammatory response, inhibited autophagy, maintained the expression of VE-cadherin, and meliorated cortical and medullary perfusion. Conclusion: Ulinastatin effectively protects the adhesion junction and helps ameliorate the perfusion of kidney capillaries during sepsis by the inhibition of autophagy and the expression of inflammatory factors.


2020 ◽  
Vol 45 (2) ◽  
pp. 209-221 ◽  
Author(s):  
Ye Zhu ◽  
Sheng-Wei Wei ◽  
Ao Ding ◽  
Wei-Ping Zhu ◽  
Mei-Fang Mai ◽  
...  

Background/Aims: The purpose of this study is to analyze the expression and biological function of lncRNA ANRIL, microRNA-199a, TLR4, and nuclear factor-kappa B (NF-κB) in acute renal injury (AKI) induced by lipopolysaccharide (LPS). Methods: The levels of ANRIL and microRNA-199a in mouse cells and kidneys were detected by quantitative-polymerase chain reaction. Western blot analysis was used for the NF-κB pathway protein. MTT assay was used for cell viability. Enzyme-linked immunosorbent assay was used for the secretion of inflammatory factors in mouse kidney tissue. Apoptosis was measured by flow cytometry and Western blotting. The potential binding region between ANRIL and miR-199a was verified by luciferase reporter assay. Results: The upregulation of ANRIL can reduce the expression of microRNA-199a and increases the number of apoptotic cells. The expression levels of ANRIL in LPS-induced AKI mice and LPS-treated HK2 cells were upregulated compared with the control group. Overexpression of ANRIL increased apoptosis and promoted TLR4 (Toll-like receptor 4), NF-κB phosphorylation, and downstream transcription factor production. Conclusion: ANRIL/NF-κB pathway in LPS-induced apoptosis provided theoretical guidance for ANRIL in the treatment of AKI.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Li ◽  
Li Li ◽  
Tian Lan

Abstract Background Osteoarthritis (OA) is a kind of systemic musculoskeletal disorder and a most important factor for causing disability and physical painfulness. Nevertheless, due to the fact that OA can be triggered by multiple etiological factors, this disease is hard to be cured. Therefore, it is of great necessity for us to find novel targets or drugs for OA treatment. Materials and methods The chondrocytes were treated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) to induce pyroptosis in OA. The cell proliferation was detected by Cell Counting Kit-8 assay (CCK-8 assay). Enzyme-linked immunosorbent assay (ELISA) was used for the detection of pyroptosis-related inflammatory factors. Then, the antagonists for gasdermin D (GSDMD) (disulfiram) and high mobility group box 1 (HMGB1) (glycyrrhizic acid) were used to treat the cell model to observe the effects of disulfiram and glycyrrhizic acid on the proliferation of chondrocytes in OA. The protein levels of pyroptosis-related inflammatory factors were measured by western blot, and the levels of aldehyde dehydrogenase (ALDH) and reactive oxygen species (ROS) were measured by corresponding commercial kits. Results After chondrocytes were induced by LPS and ATP, the cell proliferation was decreased and the expressions of pyroptosis-related inflammatory factors were increased. Disulfiram and glycyrrhizic acid treatment led to enhanced cell proliferation and increased expressions of pyroptosis-related inflammatory factors, while disulfiram showed better alleviative effects on the inflammation in chondrocytes in OA. However, co-treatment with disulfiram at a high concentration and glycyrrhizic acid did not result in higher proliferation of chondrocytes and alleviated inflammation, but led to oxidative stress. Conclusion In conclusion, co-treatment with disulfiram and glycyrrhizic acid at a standard concentration suppresses the inflammatory response of chondrocytes, which may provide guidance for the use of the drugs in the treatment of OA.


Cartilage ◽  
2020 ◽  
pp. 194760351990080 ◽  
Author(s):  
Liqiang Zhi ◽  
Jianwu Zhao ◽  
Hongmou Zhao ◽  
Zhong Qing ◽  
Hongliang Liu ◽  
...  

Background Long noncoding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) is an oncogenic lncRNA; however, its role in osteoarthritis (OA) pathology still remains unknown. Materials and Methods qRT-PCR was performed to measure the expressions of OIP5-AS1, miR-29b-3p and progranulin (PGRN) mRNA in OA cartilage tissues and normal cartilage tissues. Chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to induce the inflammatory response. Overexpression plasmids, microRNA mimics, microRNA inhibitors and small interfering RNAs were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 assay was used for determining the cell viability and Transwell assay was used for monitoring cell migration. Western blot was applied to measure the expressions of apoptosis-related proteins. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. StarBase and TargetScan were used to predict the binding sites between OIP5-AS1 and miR-29b-3p, miR-29b-3p and 3′-UTR of PGRN respectively, which were verified by dual luciferase reporter assay. Results OIP5-AS1 and PGRN mRNA were downregulated while miR-29b-3p was upregulated in OA tissues and models. The up-regulated OIP5-AS1 facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while ameliorated the apoptosis and inflammatory response. However, miR-29b-3p had opposite effects. PGRN was identified as a target gene of miR-29b-3p, which could be indirectly suppressed by OIP5-AS1 knockdown. Conclusion Downregulation of OIP5-AS1 induced by IL-1β could inhibit the proliferation and migration abilities of CHON-001 and ATDC5 cells and facilitate the apoptosis and inflammation response via regulating miR-29b-3p/PGRN axis.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ting Xu ◽  
Jia-Chen Guo ◽  
Sha-Sha Wu ◽  
Yan Wang ◽  
Xiao-Long Liu ◽  
...  

Background. Q-1 is a novel compound extracted from the Miao medicine Tiekuaizi. Although Q-1 is known to be a coumarin derivative, its structure has not been deposited in the ACX library. Our previous study showed that Q-1 inhibits the activity of inflammatory cells. This study explores the efficacy of Q-1 in regulating rheumatoid arthritis (RA). The findings show that Q-1 acts through the NF-κB signaling pathway. Methods. The effects of Q-1 were explored using a bovine type II collagen-induced arthritis (CIA) rat model. The CIA rats were intragastrically administered with high (30 mg·kg−1) or low (15 mg·kg−1) doses of Q-1. The control group was administered with an equal volume of drinking water, while the positive control group was administered with Tripterygium glycoside (9.45 mg·kg−1) for 28 consecutive days. The arthritis indices and ankle joint swelling rates were determined. The levels of IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1) in serum and sialic acid (SA) in liver homogenate were determined by enzyme-linked immunosorbent assay (ELISA). The pathological features of the ankle joint were analyzed by hematoxylin and eosin (HE) staining. The IκB, P-IκB, P65, and P-P65 protein levels in synovial tissue were assayed by western blotting. Results. The arthritis index, ankle joint swelling rate, IL-1β, IL-6, and MCP-1 levels in serum, SA level in liver tissue, and IκB, P-IκB, P65, and P-P65 protein levels in synovial tissues were significantly higher ( P < 0.01 ) in the CIA model compared to the control group. RA was successfully replicated by the CIA model, as shown by the joint swelling results and histopathological sections of the ankle. Notably, all the above indicators decreased significantly ( P < 0.01 ) after treatment with Q-1 compared to the model. In addition, animals treated with Q-1 showed lower inflammation in the ankle joints than the model rats. Conclusion. The findings indicate that Q-1 effectively inhibited RA in rats by downregulating IκB, P-IκB, P65, and P-P65, inhibiting the excessive release of inflammatory factors, and inhibiting the overactivation of the NF-κB signaling pathway.


Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiaoxia Ye ◽  
Mingming Zhu ◽  
Xiaohang Che ◽  
Huiyang Wang ◽  
Xing-Jie Liang ◽  
...  

Abstract Background Microglial activation is a prominent feature of neuroinflammation, which is present in almost all neurodegenerative diseases. While an initial inflammatory response mediated by microglia is considered to be protective, excessive pro-inflammatory response of microglia contributes to the pathogenesis of neurodegeneration. Although autophagy is involved in the suppression of inflammation, its role and mechanism in microglia are unclear. Methods In the present study, we studied the mechanism by which lipopolysaccharide (LPS) affects microglial autophagy and the effects of autophagy on the production of pro-inflammatory factors in microglial cells by western blotting, immunocytochemistry, transfection, transmission electron microscopy (TEM), and real-time PCR. In a mouse model of neuroinflammation, generated by intraventricular injection of LPS (5 μg/animal), we induced autophagy by rapamycin injection and investigated the effects of enhanced autophagy on microglial activation by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. Results We found that autophagic flux was suppressed in LPS-stimulated N9 microglial cells, as evidenced by decreased expression of the autophagy marker LC3-II (lipidated form of MAP1LC3), as well as increased levels of the autophagy adaptor protein SQSTM1. LPS significantly decreased Vps34 expression in N9 microglial cells by activating the PI3KI/AKT/MTOR pathway without affecting the levels of lysosome-associated proteins and enzymes. More importantly, overexpression of Vps34 significantly enhanced the autophagic flux and decreased the accumulation of SQSTM1 in LPS-stimulated N9 microglial cells. Moreover, our results revealed that an LPS-induced reduction in the level of Vps34 prevented the maturation of omegasomes to phagophores. Furthermore, LPS-induced neuroinflammation was significantly ameliorated by treatment with the autophagy inducer rapamycin both in vitro and in vivo. Conclusions These data reveal that LPS-induced neuroinflammation in N9 microglial cells is associated with the inhibition of autophagic flux through the activation of the PI3KI/AKT/MTOR pathway, while enhanced microglial autophagy downregulates LPS-induced neuroinflammation. Thus, this study suggests that promoting the early stages of autophagy might be a potential therapeutic approach for neuroinflammation-associated diseases.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 333-342
Author(s):  
Yawei Feng ◽  
Jun Liu ◽  
Ranliang Wu ◽  
Peng Yang ◽  
Zhiqiang Ye ◽  
...  

AbstractBackground and aimAcute kidney injury (AKI) is a common complication of sepsis. Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) plays a vital role in various diseases, including AKI. This study aimed to investigate the function and mechanism of NEAT1 in sepsis-induced AKI.Materials and methodsA septic AKI model was established by treating HK-2 cells with lipopolysaccharide (LPS). The levels of NEAT1 and miR-22-3p were measured by quantitative real-time PCR. Cell apoptosis was assessed by flow cytometry. The levels of apoptosis-related protein and autophagy-related factors were examined by the western blot assay. An enzyme-linked immunosorbent assay was used to calculate the contents of inflammatory factors. The interaction between NEAT1 and miR-22-3p was validated by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay. The levels of nuclear factor (NF)-κB pathway-related proteins were evaluated by the western blot assay.ResultsNEAT1 was upregulated, while miR-22-3p was downregulated in patients with sepsis and in LPS-stimulated HK-2 cells. LPS treatment triggered cell apoptosis, autophagy, and inflammatory response in HK-2 cells. NEAT1 knockdown attenuated LPS-induced cell injury. NEAT1 modulated LPS-triggered cell injury by targeting miR-22-3p. Furthermore, NEAT1 regulated the NF-κB pathway by modulating miR-22-3p.ConclusionDepletion of NEAT1 alleviated sepsis-induced AKI via regulating the miR-22-3p/NF-κB pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoyou Wang ◽  
Lei Zhang ◽  
Huarui Shen ◽  
Qi Hao ◽  
Shijie Fu ◽  
...  

Abstract Background Icariin (ICAR) is the main effective component extracted from epimedium, and is reported to have the potential to treat osteoarthritis (OA). However, its pharmacological function on chondrocytes has not been fully clarified. Methods Different doses of ICAR were used to treat chondrocyte cell lines, including CHON-001 and ATDC5. Then the expressions of different lncRNAs were measured by qRT-PCR. Interleukin-1β (IL-1β) was used to simulate the inflammatory response environment of chondrocytes. Overexpression plasmids and short hairpin RNAs of lncRNA CYTOR were used to construct gain-of-function and loss of function models. CCK-8 was conducted to determine the cell viability. Flow cytometry was used to detect the apoptosis of chondrocytes. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors (IL-6, IL-8, TNF-α) in the supernatant of the chondrocytes. Results Compared with other lncRNAs, CYTOR was changed most significantly in both CHON-001 and ATDC5 cells after treatment with ICAR. ICAR promotes the viability and inhibits the apoptosis of CHON-001 and ATDC5 cells induced by IL-1β, accompanied with reduced levels of inflammatory factors. Overexpression of CYTOR facilitated the viability of chondrocytes, while repressed their apoptosis and inflammatory response. What’s more, knockdown of CYTOR reversed the protective effects of ICAR on chondrocytes. Conclusion CYTOR was a pivotal lncRNA involved in the protective function of ICAR on chondrocytes.


Sign in / Sign up

Export Citation Format

Share Document