scholarly journals Occurrence of potentially zoonotic and cephalosporin resistant enteric bacteria among shelter dogs in the Central and South-Central Appalachia

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Ashutosh Verma ◽  
Kimberly Carney ◽  
Marina Taylor ◽  
Kaitlyn Amsler ◽  
Joey Morgan ◽  
...  

Abstract Background Antimicrobial resistance and presence of zoonotic enteropathogens in shelter dogs pose a public health risk to shelter workers and potential adopters alike. In this study we investigated the prevalence of zoonotic bacterial pathogens and cephalosporin resistant (CefR) enteric bacteria in the feces of apparently healthy shelter dogs in the Cumberland Gap Region (CGR) in the US states of Kentucky, Tennessee and Virginia. Results Fecal samples of 59 dogs from 10 shelters in the CGR of Central and South-Central Appalachia were screened for the presence of Campylobacter jejuni, Clostridium perfringens, Salmonella and CefR enteric bacteria. C. jejuni, C. perfringens were detected by PCR based assays. Culture and PCR were used for Salmonella detection. Of 59 dogs, fecal samples from 14 (23.7%) and 8 (13.6%) dogs tested positive for cpa and hipO genes of C. perfringens and C. jejuni, respectively. Salmonella was not detected in any of the tested samples by PCR or culture. CefR enteric bacteria were isolated on MacConkey agar supplemented with ceftiofur followed by identification using MALDI-TOF. Fecal samples from 16 dogs (27.1%) yielded a total of 18 CefR enteric bacteria. Majority of CefR isolates (14/18, 77.8%) were E. coli followed by, one isolate each of Enterococcus hirae, Acinetobacter baumannii, Acinetobacter pittii, and Pseudomonas aeruginosa. CefR enteric bacteria were tested for resistance against 19- or 24-antibiotic panels using broth microdilution method. Seventeen (94.4%) CefR bacteria were resistant to more than one antimicrobial agent, and 14 (77.8%) displayed multidrug resistance (MDR). Conclusions This study shows that shelter dogs within the CGR not only carry zoonotic bacterial pathogens, but also shed multidrug resistant enteric bacteria in their feces that may pose public health risks.

2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Andrew Walkty ◽  
James A. Karlowsky ◽  
Melanie R. Baxter ◽  
Heather J. Adam ◽  
George G. Zhanel

ABSTRACTThe Clinical and Laboratory Standards Institute (CLSI) broth microdilution method was used to evaluate thein vitroactivities of plazomicin and comparator antimicrobial agents against 7,712 Gram-negative and 4,481 Gram-positive bacterial pathogens obtained from 2013 to 2017 from patients in Canadian hospitals as part of the CANWARD Surveillance Study. Plazomicin demonstrated potentin vitroactivity againstEnterobacteriaceae(MIC90≤ 1 µg/ml for all species tested exceptProteus mirabilisandMorganella morganii), including aminoglycoside-nonsusceptible, extended-spectrum β-lactamase (ESBL)-positive, and multidrug-resistant (MDR) isolates. Plazomicin was equally active against methicillin-susceptible and methicillin-resistant isolates ofStaphylococcus aureus.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S254-S254
Author(s):  
Min Ja Kim ◽  
You Seung Chung ◽  
Hojin Lee ◽  
Jin Woong Suh ◽  
Yoojung Cheong ◽  
...  

Abstract Background Chlorhexidine digluconate (CHG), the most widely used antiseptic, has recently been applied to patient washing to decolonize the multidrug-resistant organisms (MDROs), but there are little data on susceptibilities of MDROs to CHG. The purpose of this study was to evaluate CHG resistance among MDROs before and after the intervention of daily CHG bathing in adult intensive care units (ICUs). Methods The intervention of daily body washing with 2% CHG cloths were taken in adult patients the medical or surgical ICU of 23-bed by a crossover manner for 6 months (MICU, July to December 2017; SICU, January to June 2018) in a 1,050-bed, university hospital in the Republic of Korea. Available MDRO isolates were randomly selected from clinical cultures of ICU patients within 6 months before, during and after the intervention, including MRSA, MR-CoNS, VRE, Carbapenem-resistant Pseudomonas aeruginosa (CR-PA), CR-Acinetobacter baumannii (CR-AB). Minimum inhibitory concentrations (MICs) were determined using the broth microdilution method set by the Clinical Laboratory Standards Institute. Determination of the minimum bactericidal concentrations (MBCs) was performed by subculturing 10 µL from each well without visible microbial growth. Cumulative amounts of CHG used in both ICUs was estimated across the study period from January 2008 to June 2018. Results The cumulative CHG consumption from both ICUs increased sharply from 27,503 g to 29,556 g after one-year intervention. The ranges of MICs and MBCs of CHG among MDRO clinical isolates selected by a 6-month phase are summarized in Table 1. Particularly, CR-PA and CR-AB isolates revealed four to eight times higher MICs and MBCs compared with the majority of Gram-positives excepting some VRE isolates. On the other hand, neither MICs and MBCs ranges of CHG from the MDRO isolates nor the monthly incidence of the MDROs from both ICUs were significantly increased before and after the intervention of daily CHG bathing. Conclusion This study indicates that some Gram-negative MDRO isolates with higher MICs and MBCs of CHG might be from longstanding exposure to CHG or efflux pumps. Although 2% daily CHG bathing uses over 1,000 times higher concentrations than the lethal concentration, it might be needed to monitor CHG resistance among MDROs. Disclosures All authors: No reported disclosures.


2016 ◽  
Vol 5 (3) ◽  
pp. 22-26 ◽  
Author(s):  
Madhu Pandey ◽  
Anand Pandey ◽  
Rajesh Kumar ◽  
Ashutosh Pathak ◽  
Anupam Dikshit

The present study focussed on the bactericidal effect of Tridax procumbens L. against water borne bacterial pathogens. The bacterial species used in present study were Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Klebsiella pneumoniae, which cause serious diseases like Diarrhoea, Cholera, Salmonellosis, Pneumonia, etc. CLSI recommended broth microdilution method was used in this study for assessing the antibacterial efficacy of the candidate plant extract. Results were depicted in the form of IC50 (mg/ml) and MIC (mg/ml) values. On the basis of this study it can be interpreted that Tridax procumbens L. proved to be a very potential source of antibacterial agent against some water borne bacterial.Pandey et al., International Current Pharmaceutical Journal, February 2016, 5(3): 22-26


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 152 ◽  
Author(s):  
Ramona Iseppi ◽  
Alessandro Di Cerbo ◽  
Patrizia Messi ◽  
Carla Sabia

Background: We investigated the virulence factors, genes, antibiotic resistance patterns, and genotypes (VRE and ESBL/AmpC) production in Enterococci and Enterobacteriaceae strains isolated from fecal samples of humans, dogs, and cats. Methods: A total of 100 fecal samples from 50 humans, 25 dogs, and 25 cats were used in the study. MICs of nine antimicrobials were determined using the broth microdilution method. Polymerase chain reaction was used for the detection of genes responsible for antibiotic resistance (VRE and ESBL/AmpC) and virulence genes both in Enterococcus species, such as cytolysin (cylA, cylB, cylM), aggregation substance (agg), gelatinase (gelE), enterococcal surface protein (esp), cell wall adhesins (efaAfs and efaAfm), and in Enterobacteriaceae, such as cytolysin (hemolysin) and gelatinase production (afa, cdt, cnf1, hlyA, iutA, papC, sfa). Results: Enterococcus faecium was the most prevalent species in humans and cats, whereas Enterococcus faecalis was the species isolated in the remaining samples. A total of 200 Enterobacteriaceae strains were also detected, mainly from humans, and Escherichia coli was the most frequently isolated species in all types of samples. In the Enterococcus spp, the highest percentages of resistance for ampicillin, amoxicillin/clavulanate, erythromycin, tetracycline, ciprofloxacin, teicoplanin, and vancomycin were detected in cat isolates (41.6%, 52.8%, 38.9%, 23.6%, 62.5%, 20.8%, and 23.6% respectively), and in E. coli, a higher rate of resistance to cefotaxime and ceftazidime emerged in cat and dog samples, if compared with humans (75.4% and 66.0%, 80.0% and 71.4%, and 32.0% and 27.2%, respectively). Regarding the total number of enterococci, 5% and 3.4% of the strains were vancomycin and teicoplanin resistant, and the vancomycin resistance (van A) gene has been detected in all samples by PCR amplification. All the Enterobacteriaceae strains were confirmed as ESBL producers by PCR and sequencing, and the most frequent ESBL genes in E. coli strains from humans and pet samples were blaCTX-M-1 and blaCTX-M-15. Conclusions: Our results provide evidence that one or more virulence factors were present in both genera, underlining again the ability of pet strains to act as pathogens.


2020 ◽  
Vol 13 (7) ◽  
pp. 153
Author(s):  
Artur Adamczak ◽  
Marcin Ożarowski ◽  
Tomasz M. Karpiński

Curcumin, a principal bioactive substance of turmeric (Curcuma longa L.), is reported as a strong antioxidant, anti-inflammatory, antibacterial, antifungal, and antiviral agent. However, its antimicrobial properties require further detailed investigations into clinical and multidrug-resistant (MDR) isolates. In this work, we tested curcumin’s efficacy against over 100 strains of pathogens belonging to 19 species. This activity was determined by the broth microdilution method and by calculating the minimum inhibitory concentration (MIC). Our findings confirmed a much greater sensitivity of Gram-positive than Gram-negative bacteria. This study exhibited a significantly larger variation in the curcumin activity than previous works and suggested that numerous clinical strains of widespread pathogens have a poor sensitivity to curcumin. Similarly, the MICs of the MDR types of Staphylococcus aureus, S. haemolyticus, Escherichia coli, and Proteus mirabilis were high (≥2000 µg/mL). However, curcumin was effective against some species and strains: Streptococcus pyogenes (median MIC = 31.25 µg/mL), methicillin-sensitive S. aureus (250 µg/mL), Acinetobacter lwoffii (250 µg/mL), and individual strains of Enterococcus faecalis and Pseudomonas aeruginosa (62.5 µg/mL). The sensitivity of species was not associated with its affiliation to the genus, and it could differ a lot (e.g., S. pyogenes, S. agalactiae and A. lwoffii, A. baumannii). Hence, curcumin can be considered as a promising antibacterial agent, but with a very selective activity.


2015 ◽  
Vol 59 (6) ◽  
pp. 3263-3270 ◽  
Author(s):  
Helio S. Sader ◽  
Paul R. Rhomberg ◽  
David J. Farrell ◽  
Ronald N. Jones

ABSTRACTArbekacin is a broad-spectrum aminoglycoside licensed for systemic use in Japan and under clinical development as an inhalation solution in the United States. We evaluated the occurrence of organisms isolated from pneumonias in U.S. hospitalized patients (PHP), including ventilator-associated pneumonia (VAP), and thein vitroactivity of arbekacin. Organism frequency was evaluated from a collection of 2,203 bacterial isolates (339 from VAP) consecutively collected from 25 medical centers in 2012 through the SENTRY Antimicrobial Surveillance Program. Arbekacin activity was tested against 904 isolates from PHP collected in 2012 from 62 U.S. medical centers and 303 multidrug-resistant (MDR) organisms collected worldwide in 2009 and 2010 from various infection types. Susceptibility to arbekacin and comparator agents was evaluated by the reference broth microdilution method. The four most common organisms from PHP wereStaphylococcus aureus,Pseudomonas aeruginosa,Klebsiellaspp., andEnterobacterspp. The highest arbekacin MIC amongS. aureusisolates from PHP (43% methicillin-resistantS. aureus[MRSA]) was 4 μg/ml. AmongP. aeruginosaisolates from PHP, only one had an arbekacin MIC of >16 μg/ml (MIC50and MIC90, 1 and 4 μg/ml), and susceptibility rates for gentamicin, tobramycin, and amikacin were 88.0, 90.0, and 98.0%, respectively. Arbekacin (MIC50, 2 μg/ml) and tobramycin (MIC50, 4 μg/ml) were the most potent aminoglycosides tested againstAcinetobacter baumannii. AgainstEnterobacteriaceaefrom PHP, arbekacin and gentamicin (MIC50and MIC90, 0.25 to 1 and 1 to 8 μg/ml for both compounds) were generally more potent than tobramycin (MIC50and MIC90, 0.25 to 2 and 1 to 32 μg/ml) and amikacin (MIC50and MIC90, 1 to 2 and 2 to 32 μg/ml). Arbekacin also demonstrated potentin vitroactivity against a worldwide collection of well-characterized MDR Gram-negative and MRSA strains.


2017 ◽  
Vol 36 (3) ◽  
pp. 1-7
Author(s):  
E. Ekuadzi ◽  
R. A. Dickson ◽  
T. C. Fleischer ◽  
S. O. Dapaah ◽  
E. O. Reynolds ◽  
...  

The alarming rise in the incidences of multidrug-resistant microorganisms and the decline innew antibiotic discovery make the search for new antimicrobial agents or efforts at restoring the activity of older antibiotics to which the microbes have developed resistance very necessary. The aim of the present study is to investigate the antimicrobial and modulation effects of the 70% ethanol extracts of Lannea schimperi, Commelina nudiflora and Piliostigma reticulatum against usceptible strains of microorganisms. Using the broth microdilution method, the minimum inhibitory concentrations (MICs) of the extracts were determined. The checkerboard assay was used to determine the modulation effects when sub-inhibitory concentrations of plant extracts were combined with the standard antibiotics. All three plants extracts possessed weak antimicrobial effects. For the modulation experiments, fifteen of the twenty-seven combinatorial casesyielded biologically significant effects. The ethanol extracts of the three plants studied here are good modulators as they reduced the MIC of ciprofloxacin and ketoconazole by factors that are comparable to that of reserpine. However the exact compounds and their exact mechanism of modulation require further investigation.Keywords: Anti-infective, modulation, Lannea schimperi, Commelina nudiflora, Piliostigmareticulatum, ethnomedicine


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S430-S430
Author(s):  
Veronique Sauvonnet ◽  
Elodie Escoffier ◽  
Christine Franceschi ◽  
Diane Halimi ◽  
Roland Martelin ◽  
...  

Abstract Background Species belonging to the Acinetobacter baumannii-calcoaceticus (ABC) complex, such as A. baumannii, A. pittii and A. nosocomialis, are a major cause of hospital acquired infections and outbreaks with increasing occurrence of multidrug-resistance. Sulbactam-durlobactam (SUD), a combination of one active β-lactam antibiotic (sulbactam) with a new β-lactamase inhibitor (durlobactam), is currently being tested in a phase 3 clinical trial by Entasis Therapeutics for the treatment of serious infections caused by ABC, including multidrug-resistant strains. At the same time, an ETEST® SUD (sulbactam-durlobactam - MIC range 0.004/4-64/4 µg/mL) has been developed and calibrated versus the broth microdilution reference method (BMD) as described by the Clinical and Laboratory Standards Institute (CLSI). This test is intended to determine the MIC of sulbactam-durlobactam for species of the ABC complex. The aim of this study was to perform a first comparative study of ETEST SUD with the CLSI BMD method on a panel of 263 isolates. Methods The panel consisted of 204 A. baumannii, 29 A. pittii, 30 A. nosocomialis, including 24 SUD-resistant strains, and one CLSI QC strain. BMD was performed using the 2021 CLSI guidelines. ETEST SUD was evaluated using the standard ETEST procedure for Acinetobacter spp. (inoculum 0.5 McFarland, Mueller Hinton medium, incubation at 35°C for 20-24h). For each method, the MIC was read at complete inhibition of visible growth. To determine category agreement (CA) and error rates, the sulbactam-durlobactam provisional breakpoint of 4 µg/mL was applied. Results The QC strain MICs were in the expected range with reproducible results. The essential MIC agreement [EA, ±1 dilution] was 97.7% without any tendency to over- or underestimate the MIC when compared to BMD. The CA was 98.5%. Two Very Major Errors, both within the EA, and two Major Errors, one within the EA, were observed. Conclusion In this study, the ETEST SUD was found to be equivalent to the CLSI reference method. MIC end points were easy to read. With a 15-dilution range and simplicity of use, ETEST SUD could represent a valuable tool for MIC determination and could be an alternative to BMD. For Research Use Only. The performance characteristics of this product have not been established yet. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianli Yang ◽  
Hekun Mei ◽  
Jin Wang ◽  
Yun Cai

BackgroundThe widespread use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria such as multidrug-resistant Acinetobacter baumannii (AB). Tigecycline (TGC), as the first glycylcycline antibiotic approved by FDA, is a broad-spectrum antibiotic which remains highly effective to treat AB infections.ObjectiveTo confirm the TGC treatment dosage and effectiveness to treat AB infections in the Chinese population by performing therapeutic drug monitoring (TDM).MethodsThis study was performed from October 2018 through March 2019 at the PLA General Hospital. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated and employed to determine the plasma concentrations of TGC in patients with infectious diseases. The minimum inhibitory concentration (MIC) of TGC to clinically isolated AB was determined by broth microdilution method, agar dilution method, and disk diffusion method. Moreover, a model of population pharmacokinetics/pharmacodynamics (PPK/PD) was constructed.ResultsA total of 186 plasma samples from 67 patients were detected by the validated HPLC-MS/MS method. The MIC values determined by the broth microdilution method were more sensitive and accurate than the other two methods. The microbial and clinical PK/PD breakpoints were reached when the maintenance dose of TGC was 100 mg.ConclusionOur study established a validated HPLC-MS/MS method to monitor the plasma concentrations of TGC. In view of the MIC range to AB isolates in our hospital and the PPK/PD modeling results, we recommend a relatively high dose of 100 mg q12h regimen to achieve the optimal clinical efficacy and antimicrobial response.


Author(s):  
Dustin O'Neall ◽  
Emese Juhász ◽  
Ákos Tóth ◽  
Edit Urbán ◽  
Judit Szabó ◽  
...  

Abstract Our objective was to compare the activity ceftazidime-avibactam (C/A) and ceftolozane–tazobactam (C/T) against multidrug (including carbapenem) resistant Pseudomonas aeruginosa clinical isolates collected from six diagnostic centers in Hungary and to reveal the genetic background of their carbapenem resistance. Two hundred and fifty consecutive, non-duplicate, carbapenem-resistant multidrug resistant (MDR) P. aeruginosa isolates were collected in 2017. Minimal inhibitory concentration values of ceftazidime, cefepime, piperacillin/tazobactam, C/A and C/T were determined by broth microdilution method and gradient diffusion test. Carbapenem inactivation method (CIM) test was performed on all isolates. Carbapenemase-encoding blaVIM, blaIMP, blaKPC, blaOXA-48-like and blaNDM genes were identified by multiplex PCR. Of the isolates tested, 33.6& and 32.4& showed resistance to C/A and C/T, respectively. According to the CIM test results, 26& of the isolates were classified as carbapenemase producers. The susceptibility of P. aeruginosa isolates to C/A and C/T without carbapenemase production was 89& and 91&, respectively. Of the CIM-positive isolates, 80& were positive for blaVIM and 11& for blaNDM. The prevalence of Verona integron-encoded metallo-beta-lactamase (VIM)-type carbapenemase was 20.8&. NDM was present in 2.8& of the isolates. Although the rate of carbapenemase-producing P. aeruginosa strains is high, a negative CIM result indicates that either C/A or C/T could be effective even if carbapenem resistance has been observed.


Sign in / Sign up

Export Citation Format

Share Document